

-

Archimedes Assembly
Language

A Dabhand Guide

Mike Ginns

Archimedes Assembly Language:
A Dabhand Guide

© Mike Ginns 1988
ISBN 1-870'.\36-20-8. First edition May 1988

Editor: Shona Mcisaac
Typesetting: Bruce Smith
Cover: Paul Holmes/Clare Atherton
Illustrations: David Price/David Atherton

Acomsoft is a trade mark of Acom Computers Ltd, 645 Newmarket Road, Cam
bridge, CBS 8PB. MacAuthor is published by Icon Technology Ltd, Leicester, Eng
land. The Apple Macintosh and Laserwriter are produced by Apple Computer Inc.

Within this book the letters BBC refer to the British Broadcasting Corporation. The
terms BBC micro, Master 128, Master Compact and Archimedes refer to the
computers manufactured by Acom Computers Ltd under licence from the BBC.
InterWord is published by Computer Concepts.

All rights reserved. No part of this book (except brief passages quoted for critical
purposes) or any of the computer programs to which it relates may be reproduced
or translated in any form, by any means mechanical electronic or otherwise with
out the prior written consent of the copyright holder.

Disclaimer: Because neither Dabs Press nor the author have any control over the
way the material in this book and accompanying programs disc is used, no warran
ty is given or should be implied as to the suitability of the advice or programs for
any given application. No liability can be accepted for any consequential loss or
damage, however caused, arising as a result of using the programs or advice prin
ted in this book/programs disc.

Published by Dabs Press, 76 Gardner Road, Prestwich, Manchester
M25 7HU, UK. Tel. 061-773 2413 Telecom Gold 72:MAG11596, Prestel 942876210.

Typeset in 10 on 11 pt Palatino by Dabs Press using the Acomsoft VIEW word pro- _..,_
cessor, MacAuthor, Apple Macintosh SE and LaserWriter II.

Printed and bound in the UK by A. Wheaton & Co., Ltd, Exeter.

2

Contents

1 Introduction 13
13
13
15

The Archimedes and the ARM
RISC Design
Notation

2 : An Overview of the ARM 17
17
18
18
18
19
19
20
21
22
23
24
25

3

A Typical Computer System Model
Input/Output
Memory
Communication Buses
The Data Bus
Words
The Address Bus
Byte and Word Accessed Memory
Word-aligned Addresses
Virtual Memory
Executing Machine Code Instructions
Pipelining

Internal Architecture 27
The Arithmetic Logic Unit 27
The Barrel Shifter 28
Processor Registers 29
Registers on the ARM 30
Uncommitted Registers 31
Special Purpose Registers 31
R14: The Link Register 32
R15 : Program Counter and Status Register 32
The Program Counter 32
The Status Flags 33
Setting the Flags 34
Mode Flags 34
lli&M~ ~

3 ·

Archimedes Assembly Language

Supervisor Mode 35
Interrupt Modes 35
Registers - Different Processor Modes 35
ARM Instructions 37
The RISC Concept 37
RISC verses CISC 37
Instruction Length 39
Conditional Execution 39
Data Shifts 40

4 The BASIC Assembler 41
General Format of ARM Instructions 42
The Assembler 43
Entering the Assembler 43 .
The Assembler Location Counter - P% 44
Reserving Memory 45
Assembler Listings 47
Executing Machine Code Programs 48
Returning to BASIC 48
Comments in Assembly Language 49
Assembler Labels so
The ADR Directive 51
BASIC from the Assembler 52
Passing Data 53
Returning Values 53

5 : The ARM Instruction Set 55
Conditional Execution 56
Condition Codes and the Assembler 56
Conditional Execution After Comparisons 6.3
Controlling the Status Flags 66
Mixing Conditional and S Suffixes 66
Instruction Groups 68

6 Data Processing - Format 69
Opcode Mnemonic 69
Destination 70
Operand Two : A Simple Register 70
Operand Two : An Immediate Constant 71
Range of Immediate Constants 71
Operand Two : A Shifted Register Operand 74

4

Contents

' 7 : Shift Instructions 77
Data Processing Instructions 77
Logical Shift Left : I.SR 77
Logical Shift Right : I.SR 79
Arithmetic Shift Right : ASR 81
Rotate Right : ROR 83
Rotate Right With Extend (One Bit Only) : RRX 84

8 Processing Instructions 85
"\ ADD : Addition 85

AOC : Add with Carry 87
SUB : Subtract 89
SBC : Subtract with Carry 90
RSB : Reverse subtract 91
RSC : Reverse subtract with Carry 92
MOV : Move data 93
MVN : Move Inverted Data 94
CMP : Compare 95
CMN : Compare negative 99

' AND : Logical AND 100
ORR : Logical OR 101
EOR : Logical Exclusive-OR 102
BIC : Bit Clear 103
TST : Test Bits 104
TEQ : Test ~uivalence 106

--. MUL : Multip ication 107
MLA : Multiplication with Accumulator 109

9 Register R15 110
Register with Data Processing List 110
Register R15 as Operand One 110
Register R15 as Operand Two 110 -.. The Program Counter and Pipelining 111
Register 15 as the Destination Register 113

10 Data Transfer 115
Between Memory and Registers 115
Accessing Memory 115
Addressin8i Modes 115
Indirect A dressing 116

~'

5

Archimedes Assembly Language

Pre-indexed Addressing 117
Simple Register 118
An Immediate Constant 119
Shifted Register 120
Using Write Back 121
Post-indexed Addressing 122
PC Relative Addressing 124
Byte and Word Addressing 125
Multiple Register Transfers 125
STM 126
Direction of Storage 127
Pre or Post-address Modification 127
Write Back 129
Applications of STM, LDM 130

11 Branches and SWI 131
Simple Branch (B) 131
Conditional Branches 132
Branches and Conditional Instructions 133
Branch with Llnk : BL 134
Preserving the Link Register 137
Software Interrupt : SWI 138

12 Stacks and LDM/STM 140
Computer Stacks 141
Types of Stack 142
Implementing Stacks using LDM and STM 142
Stack Applications 146

13: The BASIC Assembler 2 147
OPT Settings 147
Error Control 148
Offset Assembly 151
Storing Data in Assembly Programs 152
The ALIGN Directive 154
CALL Parameters 155
The Operating System from BASIC 158

6

""

14 Techniques & Debugging
Macro~mbly
Conditional Assembly
Mixing Macros and Conditional Assembly
Debugging Machine Code Programs
The Debugger
Using the Debugger
Breakpoints
Examining Memory and Registers

15 : Interrupts and Events
Interrupts on the Archimedes
Disabling Interrupts
Interrupt Processing
Returning From Interrupts
Writing Interrupt Routines
Events

16: Vectors
ARM Hardware Vectors
Software Vectors
Intercepting Vectors
Oaiming Vectors
Releasing Vectors
Writing Vector Intercept Routines
The Operating System Vectors
Main Line System Vectors

17 :· OS SWI Routines
Input/Output Facilities
Character In~ut/ Output
String Input Output
Conversion Routines
Other Conversion Routines
System Calls
Interrupt Driven Routines

18 The WIMP Environment
Controlling the WIMP Environment
Accessing the Mouse

161
161
164
166
167
167
168
168
169

172
173
173
174
175
176
177

179
180
181
181
182
182
182
183
184

190
191
191
192
195
196
200
205

207
207
208

Contents

7

Archimedes Assembly Language

Initialising the WIMP 210
WIMP Windows - 210
Creating Windows 212
Icons 214
Defining Icons 215
Opening Windows 216
Polling the WIMP 218
Simple Window Program Example 221

19 Managing Fonts 226
The Character Fonts 226
Initialising a Font 227
Painting Text in Different Fonts 228
Anti-aliasing 230
Setting Up the Anti-aliasing Colour Palette 232
The Anti-aliasing Transfer Function 234
Changing the Painting Colour 236
Losing Fonts 238

20 Templates and Input/Output 239
Input/Output 240
String Manipulation 240
Miscellaneous Statements 241
Control Constructs 241
Graphics 241
Template Format 242
Register Use 242

21 Manipulating Strings 252
Representing Strings 252
String Manipulation Routines 253
String Assignment 253
String Concatenation 255
String Comparison 256

22 : Functions, Operators ... 270
SGN 270
ABS 270
DIV and MOD 271
Logical Operators : AND, OR, EOR 273

8

-..,
Contents

Logical Operators : NOT 273
Arrays 274
Dimensioning Arrays 274
Array Access 275
SOUND 277

23 Control Statements and Loops 279
IF ••• THEN ••• ELSE ••• ENDIF 279
Multi-condition IF •• THEN •• ELSE Statements 282
Non-numeric Comparisons 284
REPEA T...UNTIL 285
WHILE .. ENDWHILE 285
FOR ••• NEXT 286
CASE Statement 289
Procedures 291
Local Variables 292
Parameter Passing 293
Example of Recursive Procedures 293

24 : Graphics Templates 297
VDU, PLOT 298
SWI PLOT 302
MOVE,POINT 303
DRAW, BY 304
LINE 305
CIRCLE 307
Filled Circles 309
RECTANGLE 310
Outline Rectangle 311
FILL 312
ORIGIN, MODE, CLS, CLG 313
COLOUR 314

~ GCOL 316
POINT 317
ON, OFF 317
WAIT 318

9 -

Archimedes Assembly Language

Appendices 319
A : Representing Numbers 320
B : Computer Arithmetic 330
C : Logic Operations 335
D : Instruction Set Format 339
E : OS SWI Routines 343
F : OSBYrE Routines 346
G : OSWORD Routines 350
H : VDU Control Codes 351
I : Plot Codes 352
J : Programs Disc 354
K : Dabhand Guides Guide 356

Index 361

Program Listings
2.1 Words, bytes and word-aligned addresses 22
4.1 Entering the assembler from BASic 43
4.2 Simple moving character · 46
4.3 Fully commented version of listing 4.3 49
4.4 A simple loop using labelled addresses 51
4.5 Passing data to and from machine code 54
5.1 Letter print 57
8.1 Simple two-word addition 85
8.2 Simple two-word subtraction 89
8.3 A demo of comparison and condition codes 96
8.4 Case conversion using the ORR instruction 101
8.5 Toggling data using the EOR instruction 102
8.6 Printing binary 104
8.7 Multiplying two numbers together 107
9 .1 The effect of pipelining the program counter 111
9.2 Skipping instructions 112
10.1 Demo of post-indexed indirect addressing 119
10.2 Accessing tables with indirect addressing 120
11.1 Branches and loops 132
11.2 Subroutines using branch with Link 120
12.1 Example of machine code stacks 145
13.1 Forward references 149
13.2 Forward references using two-pass assembly 150
13.3 Using the EQU directives 153
13.4 The ALIGN directive 155

10

13.5
14.1
14.2
17.1
17.2
17.3
17.4
18.1
18.2
19.1
19.2
19.3
20.1
20.2
20.3
20.4
20.5
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
22.1
22.2
22.3
23.1
23.2
23.3
23.4
24.1
24.2
24.3
24.4
Al

Passing strings to machine code 158
The 'Beep' macro 162
Conditional assembly - a demonstration 165
Converting a number to a hexadecimal string 197
Converting numbers to binary 199
Manipulating characters using OSWORD 10 201
Using oscu to catalogue a _disc 203
A simple sketch pad using the mouse 209
Example of creating windows 222
Painting text in the 'Trinity' font 229
Demonstration of anti-aliasing shading 233
Painting text in different colours 236
INPUT template 244
Demo of INKEY template from machine code 246
SPC(n) template 248
TAB(n) template 249
TAB(x,y) template 250
String assignment 254
String concatenation 255
String comparison 256
String length (LEN) 258
LEFT$ template 259
RIGHT$ template 260
MID$ template 262
INSTR template 263
STRING$ template 265
v AL template 267
sTR$ template 268
Template to perform DIV and MOD 271
Array access in machine code 275
Simple sound effects 278
Example of using the FOR ... NEXT template 281
A FOR ... NEXT loop in assembly code 287
Example of the CASE template 290
An example of recursive procedures 294
Example of a PLOf command from machine code 300
Example of a LINE template 305
Example of a CIRCLE template 308
Printing coloured stars 314
Binary patterns 322

Contents

11

Archimedes Assembly Language

This Book and You!

This book was written using the InterWord wordprocessor on a Master
128 micro. The author's files were edited after transferring them to VIEW.
The finished manuscript was transferred serially to an Apple Macintosh
where it was typeset in MacAuthor. Final camera-ready copy was produ
ced on an Apple LaserWriter IINT from which the book was printed by A.
Wheaton & Co.

Correspondence with Dabs Press, or the author, should be sent to the
address on page 2 or via electronic mail on Telecom Gold (72:MAG11596) or
Prestel (942876210). An answer to your letter or mailbox cannot be
guaranteed, but we will try our best. /""""\

All corresponents will be advised of future publications, unless we receive
a request otherwise. Personal details held will be provided on request, in
accordance with the Data Protection Act. Catalogues detailing the full
range of Dabs Press books and software are available on request.

12

1 · Introduction

The Archimedes and the ARM

The Archimedes is the revolutionary new micro from Acorn Computers. It
follows a long line of famous predecessors including the successful BBC
micro, the BBC B+ and the current Master series. The Archimedes,
however, is unlike anything which has gone before - it is a totally new
machine. While remaining as compatible as possible with earlier models, it
represents a major new departure for Acorn and an exciting l~ap forward
for Acorn enthusiasts.

The Archimedes is unique in many ways - it has stunning multi-coloured
graphics, a stereo sound system and supports a Window and mouse envir
onment, to mention a few. However, perhaps the most startling innova
tion is the totally new microprocessor used in the system.

Acorn has moved away from the familiar 6502 used in earlier machines.
For the Archimedes, Acorn developed its own processor using the most
up-to-date ideas and technology.

Called the Acorn RISC Machine - or simply the ARM - it is the power of this
remarkable chip which provides the advanced facilities of the machine. The
ARM out-performs not only the 6502, but also most comparable processors,
including the much-used MC68000.

~ RISC Design

The ARM represents a totally new philosphy in microprocessor design. It is
an example of a Reduced Instruction Set Computer (RISC). It is called this
because the designers have dispensed with many of the unnecessary and
inefficient instructions found on many processors. The RISC chip is equipped

--.. with relatively few instructions, but these few are flexible, powerful and
optimised so that they can be processed exceedingly fast. This gives the
ARM unprecedented power which, until now, was only available on larger
and more expensive machines. -

13

Archimedes Assembly Language

To be able to program the ARM processor directly, we must be able to com
municate with it in its own language - ARM machine code. This is very dif
ferent to the high-level languages, such as BBC BASIC, which most people
are familiar with. Machine code programs are simple sequences of num
bers and data, held in the computer's memory, which have some signific
ance to the ARM processor.

Faced with the task of writing machine code programs in this numeric
form - most of us would probably give up! However, to help us in our task,
the Archimedes provides a superb ARM machine code assembler. This
allows us to write machine code programs in a more understandable form,
using assembler statements whicb are then translated into actual machine
code data. It is not difficult to program in assembly language, it just
requires the use of certain special techniques.

This book aims to provide a complete tutorial course in writing ARM ass
embly code programs on the Archimedes computer. It explains the special
elements which make up the ARM processor, and how these elements are
used to execute machine code programs.

For the complete beginner, there is a section containing a comprehensive
guide on fundamental topics such as number bases, binary and machine
arithmetic, and logic. ThiS enables readers with only a general knowledge
of BASIC programming, to learn the concepts and ideas used in the book in a
step-by-step way.

The book describes each of the machine code instructions provided by the
ARM, together with explanations and examples of how they are used to
construct machine code programs. Various assembly programming tech
niques are covered, such as memory allocation, access, data structures,
control constructs and so on.

The powerful Arthur operating system used in the Archimedes is covered,
with details of how to access its many facilities from the machine code
level. How graphics, sound, windows, the font painter and the mouse
work from within machine code programs are covered.

To make the transition from BASIC to machine code as painless as possible,
the book contains a section on implementing BASIC statements in machine
code. All of the most useful BASIC statements are covered and for each an
assembler 'template' routine is developed which will mimic the statement's
function in madtlne code.

14

Introduction

Throughout the book, you will be encouraged to put theory into practice by
trying out example programs on your own machine. To save typing these
into the computer, the accompanying programs disc contains all the pro
grams used in the text. The disc also includes some extra utilities not
covered in the book such as a complete memory editor, disassembler and
other utilities. Full details can be found in Appendix J.

Notation

-, A standard notation has been adopted throughout the book. The symbols
below have the following special meanings:

The & symbol This signifies that the following number is in hexa
decimal. For example, & 12CA

The % symbol This signifies that the following number is in binary. For
example,%10100111010101010100011100110100

>>and<<

<>brackets

{}brackets

These are BASIC shift operations and are described in the
Archimedes BASIC manual

Brackets are used extensively when giving the syntax of
various instructions and commands. The two angled
brackets mean that the word between should not be taken
literally. It simply refers to what sort of object should be
used with the command. For example:

<Register>
means that a register name should be used in the brackets.

Unless otherwise stated, the curly brackets mean that the
object contained in them is optional and can be omitted.
For e:xamrle:

AOO{S
means that the 'S' argument is optional to the instruction

-.. Acknowlegements

Thanks are due to Siobhan FitzPatrick for reading my manuscript and
pointing out, in as tactful a way as po~ible, my many mistakes! Thank you
to Tony Goodhew for all the support, ideas and practical advice given on

15

Archimedes Assembly Language

this and other projects. Thanks are also due to Charlie, Mike, Andy and
Robert for putting up with me while I wrote the book. James Knight gave
invaluable help with the demonstration programs. Thankyou to Mark
Gould-Coates for his understanding, help and general comments on all
aspects of the book. Special thanks are also due to Jeff Fidler for his
encouragement and support, and for providing some very welcome dis
tractions during the writing of difficult parts of the book! Finally, a big
thank-you to Bruce and David for publishing the book - and coming up
with the idea in the first place!

Dedication

This book is dedicated to my parents and family for all the help, support
and encouragement they have given me over the years.

16

~ 2 · An Overview of the ARM 0J
Before embarking on a detailed examination of the ARM chip and how it is
programmed in assembly language, it's important to understand some
fundamental computer principles.

- In this chapter, we shall consider a general model of a computer and see
how the ARM chip fits into this. We shall also examine how the ARM com
municates with other parts of the computer and with the outside world.

~ Finally, the way in which the ARM ex~tes machine code instructions will
be investigated.

A Typical Computer System Model

Memory

Input CPU Output

Figure 2.1. A model of a typical computer system.

At the simplest level, most computers can be represented by the model in
figure 2.1. Data is obtained from the input to the system. It is then worked
on by the central processing unit (CPU) and the results produced are sent to

AAL-B

17

Archimedes Assembly Language

the output. The main memory of the computer is used during the process
ing as workspace. It holds the program being executed, the data being pro
cessed and intermediate results produced. Any computer system must,
therefore, resolve the problems of how to connect these separate elements
so that data can pass efficiently betweei;i them.

Input/Output

In the majority of computer systems, including the Archimedes, the
input/output is handled in the same way as the memory itself. This is
known as device memory mapping. Physical input/ output devices, eg, the
disc controller, keyboard interface, video chip and so on, are made to
appear as normal memory locations in the memory map to the processor. l"""'
Wnen the processor accesses these locations; it in fact accesses the hard-
ware registers of the corresponding device. Data can thus be passed to and
from devices simply by reading and writing the associated memory loca-
tions. This scheme provides a uniform way for the CPU to communicate
with the outside world. The remaining problem is connecting the CPU and
memory so that any arbitrary location can be accessed.

Memory

Memory on the Archimedes can be viewed as a long sequential series of
bytes (there are eight bits in a byte). Each byte is given an identifying num
ber starting at 'O'. So the first byte of memory is called location 'O', the next
location '1' and so on. Thus we can talk about the processor accessing the
data in location 'n', which means we use the nth byte of memory.

To access memory, therefore, the CPU requires some way of specifying the
number of the memory location to be used. It also needs a method of trans
ferring data to and from the memory. This is done by using the address
and data bus.

Communication Buses

A bus is simply a series of electrical signal lines connecting the CPU to the --....
other elements in the computer system. Each physical line in the bus can re
present a single binary bit, ie:

18

+5 volts = Logic 1
0 volts = Logic 0

-

. ..--.._

An Overview of the ARM

By placing combinations of +5 and 0 volts on the separate lines in the bus,
binary numbers can be represented and transferred around the computer
system. The number of signal lines, or bits, in a bus is called the bus width.
Thus, we can talk about buses which are eight, 16 or 32 bits wide.

The Data Bus

The data bus, as the name suggests, is used by the CPU to pass data to and
from the computer's memory. It is called a bi-directional bus because data
can flow in either direction. In data storage operations, the processor puts
the data on to the data bus and the memory reads it. In load operations,
the processor requests the memory to put data on to the data bus, which it
then reads.

The ARM processor is a 32-bit machine. This means that its_ data bus is 32
bits wide. This has far-reaching consequences on the performance of the
Archimedes and explains, at least in part, why the computer is so powerful.
The provision of a 32-bit data bus means that larger pieces of data can be
processed in single operations.

An example should illustrate the point. Supposing we wanted to add to
gether the contents of two integer variables. Each of these are 32-bits long.
The 6502 processor on the BBC micro, has an 8-bit data bus and would
therefore have to process the numbers in four, single-byte chunks. It would
have to perform four load operations, four additions and four stores. On
the ARM processor the two numbers could be loaded in their entirety and
added together in a single operation. This gives a huge speed advantage
over 8-bit machines as the number of memory accesses and processor
operations is drastically reduced.

Words

A very useful, if slightly vague, concept often quoted when referring to
memory is 'word'. A 'word' of memory is a logical unit defined as the num
ber of bits manipulated in parallel by the processor in single operations.

Unfortunately, the definition of a memory word is not universally accepted
and tends to vary from computer to computer. For example, the BBC mi
cra's 6502 was an 8-bit machine and clearly manipulated eight bits of data
at a time. It should therefore be talked about as having an 8-bit word
length. However, in most applications, 16-bit quantities were more often

19

Archimedes Assembly Language

needed. It was very common, therefore, to talk about words when actually
meaning these 16-bit quantities.

This is strictly incorrect, as the 6502 cannot handle 16 bits of data at a time.
Sixteen-bit quantities actually had to be accessed by the 6502 in two sep
arate chunks of eight bits. Nevertheless, the terminology persisted and tliis
can be confusing.

The ARM manipulates data of 32 bits in length. Words on the Archimedes
are therefore defined as being 32-bit quantities. It is important to appre
ciate and understand this difference between words on the BBC micro and
on the Archimedes.

To avoid any confusion, in this book, we shall always refer to words as
being 32 bits of memory unless otherwise stated.

The Address Bus

Obviously, the data bus does not provide a complete memory access
system. An address bus is also needed so that the CPU can specify which
location in memory is to be accessed. The CPU places the address of the
required location on the address bus in binary. The memory decoder then
reads this and sends control signals to the memory. These cause the
relevant memory locations to respond and take part in the transferral of
data over the data bus.

The width of the address bus specifies the size of the memory which can be .-..
accessed by the CPU. For example, on the BBC wJcro machines, the 6502 CPU
had a 16 bit address bus. This means that 2 6 different numbers can be
represented on it and thus, 216 different memory cells can be addressed.
The maximum amount of memory available on these macJF.1es, ignoring
paging techniques such as sideways memory, is therefore 2 bytes = 65535
bytes = 64 kilobytes.

On the ARM processor, the address bus is 26-bits wide. This allows the
Archimedes to have up to 67108864 bytes of memory (64 megabytes). On
production machines, 0.5 megabytes, one megabyte, or four megabytes
of writable memory are actually provided. This is still very large and will
seem massive to anyone who is used to managing with the 32k provided on
the standard BBC B computer.

20

..I'""'\.

-

An Overview of the ARM

In general, the size of memory which can be accessed via the address bus is
called the address space. Thus the Archimedes has an address space of 64
megabytes even though, in paractice, not all of this memory is provided.

Byte and Word Accessed Memory

We have already noted that the memory on the Archimedes is byte-
organised. That is, each byte of memory has its own unique address. How
ever, we have also seen that the ARM processor has a 32-bit data bus and

' accesses memory in 32-bit chunks (four bytes). This apparent discrepancy
occurs because the ARM can access memory in two ways.

In most cases it will be convenient to use the full power of the 32-bit data
bus and access memory as complete 32-bit words. However, in some cases,
for example when manipulating 8-bit quantities, it will be more convenient
to access bytes individually from anywhere within the memory map. The
ARM processor supports both methods, and it is to allow for byte access
that each byte of memory has a unique address .

.-., When accessing complete words of data (32 bits in length), the memory can
be regarded as being split into separate chunks of four bytes (32 bits) in
length. This is illustrated in figure 2.2.

'l

Location 0

Location 4

Location 8

Location 12

Bit 31 .. , .. Bit 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 7 Byte 6 Byte 5 Byte 4

Byte 11 Byte 10 Byte 9 Byte 8

Byte 15 Byte 14 Byte 13 Byte 12

Figure 2.2. Byte and word-organised memory.

(Word 0)

(Word 1)

(Word 2)

(Word 3)

21

Archimedes Assembly Language

Word 'O' starts at location 0 and includes bytes 0, 1, 2 and 3, word '1' starts
at location 4 and includes bytes 4, 5, 6 and 7 and so on. Any complete word
can be accessed by the ARM in a single operation.

When specifying which word we want to access in memory, we give the
address of the location at which it starts. So the address of the first word is
0, that of the second word is 4, the third is 8 and so on.

Word-aligned Addresses

A memory address which corresponds to the start of a word is called a
word boundary and is said to be word-aligned, ie, it is divisible by four.
The following addresses are all word-aligned:

&00000000
&00000004
&00000008
&OOOOOOOC
&00000010

Word-aligned addresses are especially significant to the ARM. When
accessing a word of memory, the address given must be word-aligned. For
example, we could not access a word consisting of bytes 2, 3, 4 and 5, by
specifying location &00000002 as the word address. This is because
&00000002 is not a word-aligned address and so the required bytes are in
fact split over two separate words of memory.

The program in listing 2.1 gives a demonstration of word-aligned
addresses. It repeatedly asks for the address of a memory location. It then
prints out which memory word contains the address, and the byte number
which the address represents within the given word. The program also
tells you whether the entered address is word-aligned or not.

Listing 2.1. Words, bytes and word-aligned address.

22

10 REM Word-aligned Addresses
20 REM (c) Michael Ginns 1987
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50 REPEAT
60 MODE 3
70 INPUT "Enter the address: " address
80 PRINT
90 IF address MOD 4 = 0 THEN

-

An Overview of the ARM

100 PRINT "Word-aligned"
110 ELSE PRINT "Not word-aligned"
120 ENDIF
130 PRINT "Word containing this address is: " address DIV 4
140 PRINT "Within this word, address is byte number: "; address

MOD 4
150 PRINT ' "Enter another address ? (y/n) : ";
160 UNTIL GET$ ="n"

The significance of word-aligned addresses will crop up again when we
consider ARM machine code instructions, as each of these must start on a
word boundary. They are described in detail in a later chapter.

Virtual Memory

Before leaving the subject of how the ARM processor organises its memory,
it is useful to look at how the physical memory is spread over the available
address space.

We have seen that the Archimedes address bus supports a maximum
memory size of 64Mb. Currently, however, a maximum of only 4Mb of
writeable memory is provided. How then is this physical memory distri
buted over the much larger 64Mb address space?

The simplest scheme, assuming a 4Mb system, would be to make addresses
0-4Mb correspond to the available memory, and to make addresses higher
than this invalid. However, things are not as straightforward as this! The
allocation of physical memory is in fact controlled by a highly-sophisticated
memory management chip called MEMC. This chip can be programmed to
make blocks of real memory appear at any address in the system. Thus, the
4Mb of memory would not appear as one contiguous area, but would be
split into blocks which could exist anywhere in the memory map.

The next question is: what happens if we try to access a memory location at
which no 'real' memory exists? The answer is that the MEMC chip complains
and sends an abort signal to the ARM processor. This normally causes an
error message to appear on screen. However, it is possible to trap this
event and use it to implement what is called ~al memory.

In a virtual memory system, the computer's main memory is supplemented
by some form of secondary or backing store - usually a hard disc. The sec
ondary memory is typically much larger than the main memory, but will
have a slower access time.

23

Archimedes Assembly Language

The program running in the machine assumes that memory is rrovided
over the whole address space (64Mb in the Archimedes). In reality, how
ever, this memory is actually held on the hard disc.

As long as the program accesses locations at which real memory exists,
then everything operates normally. However, if an area of non-existent
memory is accessed, then the abort error occurs. This is trapped and a spe
cial software routine is called. This routine determines which area of
memory the user was attempting to access. It then loads the corresponding
block from the hard disc into main memory, replacing a previously loaded
memory block. The user routine can then access the required data as if it
had been present all the time! The only difference being that there is a
slight time delay introduced by disc activity. In this way the computer's
main memory is used as a 'buffer' into which chunks of the larger hard disc
memory are loaded as they are needed.

Virtual memory is not currently implemented on the Archimedes, but the
hardware to support it does exist. It could, therefore, be added to it as an
expansion in the future. · .

Executing Machine Code Instructions

To complete our overview of the ARM system, we will look at how machine
code instructions are obeyed by the ARM. ·

Machine code instructions are binary numbers which have some signific
ance to the processor. Typically, a group of bits in the instruction will de
fine the operation which the processor is to perform. Another group will
then tell the processor where to get the data. Further bits may control the
use of special options to the instruction and so on. For example, the follow
ing 32-bit binary pattern below is the ARM machine code instruction to add
two numbers together:

%11100000100000010000000000000010

Instructions can therefore be held in memory, like any other piece of data,
and moved into the processor using the address and data buses. The ARM
processor works by continually repeating a simple sequence of operations.
This is commonly known as the fetch-execute cycle and consists of three
main parts as follows:

24

An Overview of the ARM

1) Fetch instruction

2) Decode instruction

3) Execute instruction

In the first part, the address of the instruction to be obeyed is placed in the
address bus. The complete instruction, which is always 32-bits long, is then
fetched from memory, over the data bus, to the ARM.

In the second part, the previously fetched instruction is decoded. This in
volves looking at the bit pattern making up the instruction, and deciding
which of the possible operations in the ARM's instruction set it represents.

In the final part, the previously decoded instruction is executed. That is, the
operation which the instruction specifies is carried out by the hardware
elements of the CPU.

Pipelining

A special feature of the ARM processor is that the three parts or phases just
mentioned are independent, and are performed by separate sections of the
processor. They can, therefore, be overlaf ped. Obviously we can't overlap
the fetching, decoding and executing o the same instruction! However,
when an instruction has been fetched, there is no reason why the ARM can
not begin fetching the next one while the first is being decoded. Similarly,
while the first instruction is being executed, the second can move on to be
decoded and a third instruction can be fetched and so on. This obviously
makes the machine very fast!

The ARM exploits this idea by overlapping all three phases of the cycle.
Thus, at a given time, the ARM could hold three different instructions. The
first having just been fetched, the second in the process of being decoded
and the third being executed.

Internally, the ARM holds the three instructions in a hardware element
called the 'instruction pipeline'. Instructions move along the pipeline
through each of the three phases in turn. New instructions are fetched in at
one end of the pipeline and the completed, executed instructions appear at
the other. This scheme is illustrated in figure 2.3.

25

Archimedes Assembly Language

PIPELINE

Cycle1

Cycle2

Cycle3

Cycle4

Instruction 1
Fetched
Instruction 2
Fetched
Instruction 3
Fetched
Instruction 4
Fetched

<Empty>

Instruction 1
Decoded
Instruction 2
Decoded
Instruction 3
Decoded

<Empty>

<Empty>

Instruction I
Executed
Instruction 2
Executed

Figure 2.3. Pipelined execution of instruction.

As you can see from figure 2.3, it takes three cycles to fill the pipeline in the ,......,,_
first instance. However, from this point onwards the overlap of the phases
means that the ARM is, in effect, executing one instruction for every cycle.
(There are circumstances when the pipeline has to be 'flushed' and we have
to start again from the empty state.)

The pipeline system allows the ARM to perform at least a degree of paral
lel processing of instructions. It attempts to ensure that all parts of the pro
cessor are fully utilised at all times. This highly efficient way of operating
helps to explain some of the amazing speed of the ARM processor.

26

3 · Internal Architecture

We have looked at how the ARM communicates with the outside world, at
how it organises memory access and, in general terms, how it processes
instructions. Now we can probe a little deeper and examine the hardware
elements which perform the operations specified in the processor's
instruction set.

The Arithmetic Logic Unit

When the ARM obeys an instruction, the exact course which the execution
phase follows depends on which instruction is being performed. At the
simplest level it may involve moving data around the processor, or per
haps initiating further ARM-to-memory transfers. However, there is also a
series of instructions which perform operations on pieces of data, trans
forming them and producing a result. Some of these operations are fami
liar arithmetic ones, eg, addition, subtraction, multiplication and so on.
Some are based on logic, eg, ANDing, oRing, EORing and so forth. If you are
unfamiliar with such operations, they are fully explained in Appendix C.

OPERAND 1 OPERAND2

CONTROL}
LINES ------------

RESULT

Figure 3.1. The arithmetic logic unit (ALU).

27

Archimedes Assembly Language

To carry out these operations, the ARM must have a special element of
hardware. It must be capable of taking two data words as operands and
process them, to produce the required result as output. This element is
called the arithmetic logic unit (ALU), and is fundamental to the operation
of the entire processor.

The ALU has, in addition to two data inputs and one result output, several
control connections to the rest of the ARM (figure 3.1). The ALU can perform
several different operations. These control lines tell the ALU which of these
operations is to be performed on the data presented. The appropriate con:
trol signals are selected using the results obtained by previously decoding
the instruction.

The Barrel Shifter

This oddly-named device operates together with the ALU to increase the
overall processing power of the ARM.

Before the ALU performs any operation, it first must obtain two operands
on which to work. The second operand is passed through a special element
of the ARM on its way to the ALU. This is tne barrel shifter, and it is used to
apply one of several types of shift to the operand before it is used by the
ALU.

By shifting an operand, all the bits in the operand data are moved a num
ber of places (binary positions) to the left or right. For example, a shift of
three places to the left could have the following effect:

Data before shift : %01101001100110011110010110101111
Data after shift : %01001100110011110010110101111000

Shifts of one to 32 places can be carried out directly by the barrel shifter. In
addition, several different types of shift operations are supported. The bar
rel shifter, therefore, talces the following three inputs:

1) The original operand to be shifted
2) The number of places through which the operand shifts
3) Control signals specifying the type of shift to be performed

The barrel shifter is shown diagramatically in figure 3.2.

28

~ w:v

SHIFT
CONTROL

Figure 3.2. The barrel shifter.

Internal Architecture

~
~

,........ Many central processing units, including the 6502, provide instructions to
perform data shifts. However, they usually use tlie ALU to perform the
shift operation, and are hence much slower than the ARM. Also, restrictions
are often made on the types of shift available, or on the maximum number
of places that the data can be shifted by. For example, the 6502 only allows
shifting by one place at a time. However, the ARM can perform a single 26-
bit shift operation - the 6502 must execute 26 single position shift instruc
tions making it much slower.

-...

The barrel shifter in the ARM implements shift operations in a general way.
It allows shifts to be automatically applied to an operand used by any ap
propriate instruction. As it is a separate hardware element, no time penalty
is incurred for using shifted operands - no matter how many places the
data is shifted by.

Processor Registers

A register is a hardware element inside the CPU, and it can store data. Re-
gisters are used by the ARM to hold the operands needed by instructions.

Registers are somewhat analogous with memory locations, in that the
bank of registers in the CPU can be thought of as being the private memory
of the processor. The CPU can store and manipulate data in the registers,

~ and can transfer data between external memory and the registers.

29

Archimedes Assembly Language

Remember that the registers are distinct from main memory. They do not
appear in the memory map of the system and are not accessed using the
normal way of placing addresses on the address bus. Instructions which
refer to register data have fields within them which explicitly specify, by
name, the registers to be used.

Access to the data in registers, is faster than accessing memory. This is
because they are internal to the CPU. Just access the main memory to
transfer data into the registers. Many operations can then be performed
on the register data at great speed. Only when the data is finished with, is
it returned to main memory again.

The number of registers proVided by a processor has a major effect on pro
cessor power. If too few registers are provided, the programmer quickly .i"'""'\
runs out of them and data has to be shuffled back and forth between the
registers and the slower main memory.

Registers on the ARM
If you are used to writing BBC micro machine code, you will know how
restrictive the 6502 processor is as regards registers. There are only three
registers available to the programmer (A, X and Y). There are rigid rules
governing which registers can be used with different instructions, and how
they must be used. For example, the accumulator register must be cited in
all arithmetic logical operations.

On the ARM, things are very different. Acorn has provided a large number ~
of registers. The use of these registers has been made as general and uni-
form as possible.

You have access to 16 registers. Each of these registers is 32-bits (one
word) wide. They are referred to as registers RO, Rl, R2 and so on, up to
RlS. Only two of these registers are used for special purposes by the ARM,
the others are uncommitted. The register bank, as seen by the programmer,
is summarised in figure 3.3.

30

-

RO
Rt
R2
R3
R4
RS
R6
R7
R8
R9
RlO
R11
R12
R13
R14
RlS

Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Uncommitted
Llnk Register
Program Counter

Figure 3.3. The ARM's register bank.

Uncommitted Registers

Internal Architecture

-... Registers RO to R13 are totally uncommitted. Any·one of them can be used
in instructions which make references to a register. For example, ,suppos-
ing we want to carry out the following steps: ' ·

1) Load register Rl from memory
2) Add the contents of Rl and R2, placing result in R3
3) Multiply R3 by 10 ·
4) Subtract R2 from R3, storing the result in R12
5) Shift the contents of R12 21 places left, add the contents of R6 and

store the result in RO.

Each of these steps could be carried out by single ARM instructions, and the
choice of which register to use is left to the programmer.

Special Purpose Registers

Of the remaining two registers (R14 and RlS), one is permanently used for
a special purpose by the ARM, while the other only occasionally takes on a
special function.

31

Archimedes Assembly Language

R14 : The Link Register

The link register is register R14. It is used to provide a degree of support
for implementing subroutines in machine code. The way this is done is
covered in Chapter 11 when the BL instruction is described. Briefly,
however, this instruction allows you to jump to another part of the
program, execute a section of code and then return to the start point again.
'This is like the GOSUB instruction in BASIC. Register R14 is used to store the
address. It must then be returned to after the subroutine has been executed.

So R14 is used by the ARM each time the branch with link instruction (BL) is
carried out. At other times it is unused an~ is· free for you to use in
whatever way you want.

R15 : Program Counter and Status Register

Register R15 is a special purpose register dedicated to maintaining the
ARM's program counter, status flags and mode flags. Figure 3.4 shows how
R15 is organised.

Bit : 31 30 29 28 27 26 25 .. ,.. _____ ._.,.,_ 2 1 0

R15 :I N I Z I C I V I I I F I Program counter • I Sl I SO I
Figure 3.4. Register 15 - The program counter and status flags.

The Program Counter

Bits two to 25 of R15 contain the program counter. This is how the ARM
keeps track of which instruction to fetch and carry out next. The program
counter always contains the memory location address from which the next ~
instruction is to be fetched.

The more observant among you may have noticed that the program coun
ter only occupies 24 bits of register R15. Surely though, as the address bus
of the ARM is 26 bits wide, we should also have a 26-bit program counter!

32

Internal Architecture

This would be true if it weren't for the fact that all ARM instructions must
be word-aligned in memory. (The concept of word-aligned addresses was
covered in Chapter 2.) Each ARM instruction must be stored in a word of
memory whose address is divisible by four. As the lower two bits of such
addresses are always '0', there is no need to store them in the program
counter. In effect therefore, the program counter holds the word number of
the next instruction.

When the ARM fetches an instruction, it places the contents of the program
counter on bits two to 25 of the address bus and simply zeros bits zero and
one before fetching the required instruction.

As we shall see, all ARM instructions are the same length (one word). After
fetching an instruction, therefore, the ARM simply increments the program
counter so that it points to the following word of memory. It is then ready
to fetch the next instruction.

There are other ways of explicitly changing the contents of the program
counter, for example, implementing branches. These will be described
along with their relevant instructions in Chapter 11.

The Status Flags

The second use of R15 is to store the various ARM status flags. The first
group of these (bits 28 to 31), make up what is called the status register.
These status flags reflect the results of previous operations performed by
the ARM.

For example, if two numbers are subtracted and the result is negative, the
ARM could set the negative flag (N) to indicate this. Figure 3.5 shows the
purpose of each of the status register flags. Later on, we shall see that
there are instructions which explicitly test the state of the flags and will
take different actions, depending on whether a flag is set or clear. Thus we
can make the results of part of a program affect the execution of other
parts and therefore create conditional statements - an essential require
ment in most programs.

Bits 26 and 27 of register 15 contain two more flags which reflect the state
of the interrupt system on the ARM. (Described in Chapter 15.)

AAL-C 33

Archimedes Assembly Language

Aags: NZ C V I F 51 SO

lhso
Sl

: Processor mode (bit{))
: Processor mode (bitl)

FIRQ : Fast interrupt disable
...._ ___ IRQ : Interrupt disable

.__ ____ Overflow : Set if overflow occurs
Carry : Set if carry occurs

.....__ ______ Zero : Set if zero occurs

Negative : set if negative result

Figure 3.5. The ARM's status flags.

Setting the Flags

In some cases we need to set or clear flags explicitly. Processors, like the
6502, have their status flags stored in a special register which is not directly
accessible. Therefore, they have to provide pairs of dedicated instructions """'
to set and clear the flags. The ARM processor, on the other hand, imple-
ments its status flags in R15 - a normal user register. This can be accessed
by the programmer like any other register. Thus, by storing appropriate
data in it, any combination of flags can be set or cleared. This is a good
example of how the RISC philosophy gives the processor extra power while
reducing its instruction set.

Mode Flags

Bits zero and one of register R15 form two processor mode flags. The ARM
can execute instructions in four distinct modes, and the current operating
mode is always reflected in the mode flags. Figure 3.6 lists the four modes
and shows the corresponding state for each flag.

34

Internal Architecture

St
0
0
1
1

so
0
1
0
1

Processor mode
User mode
Fast Interrupt mode (FIRQ)
Interrupt mode (IRQ)
Supervisor mode (SVC)

Figure 3.6. The mode flags and ARM processor modes.

User Mode

The normal .mode in which our programs execute is called user mode.
Unless we are involved in writing very specialised systems routines, this is
effectively the only mode which will concern us. However, for the more
adventurous - read on!

Supervisor Mode

The alternative to user mode is supervisor mode (svc). All of the routines
in the ARTHUR operating system work in this mode. When we ask it to per
form some task for us, for example, reading mouse co-ordinates, there is
an implicit change to supervisor mode. After the task is completed, control
is returned to user mode.

Interrupt Modes

Interrupt mode and fast interrupt mode are entered in response to some
external device in the computer system which interrupts the normal pro
cessing of the ARM, and demands immediate attention. Before executing
appropriate code to deal with these situations, the ARM will automatically
switch to the appropriate interrupt mode. The concept of interrupts is dealt
with in Chapter 15.

Registers Available in Different Processor Modes

The register set available to the programmer varies according to which
mode the processor is in. When executing in user mode, the normal set of
registers, RO to Rl5, are available. However, when the processor switches
to one of the other modes, this changes.

35

Archimedes Assembly Language

For example, in supervisor mode, registers R13 and R14 effectively disap
pear from view. These are replaced by two new registers which we will
call R13-svc and R14-svc. This means that instructions which would have
accessed registers R13 and R14 in user mode, will now access the contents
of registers R13-svc and R14-svc in supervisor mode.

The idea behind this system is that each processor mode has some private
registers which it can use without affecting the values of the normal re
gisters. This makes it unnecessary for the programmer to save the contents
of all user registers when a special mode is entered. The private registers
can be used freely without corrupting the data in the corresponding user
mode registers.

Register Processor register accessed when in:

Name User FIRQ IRQ SVC
mode mode mode mode

RO RO RO RO RO
Rl Rl Rl Rl Rl

R7 R7 R7 R7 R7
RS RS RS_FIRQ RS RS
R9 R9 R9_FIRQ R9 R9
RIO RIO RIO_FIRQ RIO RIO
Rll Rll Rll_FIRQ Rll Rll
R12 R12 R12_FIRQ R12 R12
R13 R13 R13_FIRQ R13_IRQ R13_svc
R14 R14 R14_FIRQ R14_IRQ R14_svc
RlS RlS RlS RlS RlS

Figure 3.7. The register bank in different processor modes

Alternative registers are made to replace the normal ones in each of the
other processor modes. The ARM contains 25 programming registers of
which 16 are visible in any given mode. Figure 3.7 illustrates this. For each
mode it gives the physical register used when one of the registers RO to RlS
is accessed.

36

Internal Architecture

ARM lnshuctions

--... A major innovation of the ARM is its special RISC architecture. We cannot,
therefore, leave our examination of the processor without mentioning
some of the special features of the instruction set.

The RISC Concept

We have seen that the designers of the ARM have tried to make the pro
cessor architecture as general and flexible as possible. It should come as no
surprise that the instruction set also follows tms design philosophy.

The ARM is a Reduced Instruction Set Computer (RISC). This means that
compared to other processors, it supports relatively few instructions.
However, each instruction is designed to be as general and flexible as poss
ible. Thus, a given instruction can be used in many different ways - each of
which would have required a separate dedicated instruction in conven
tional architectures. This allows the ARM to perform similar operations to
other processors but using a fraction of the number of instructions.

The advantage of this approach is twofold: First, the small number of
instructions supported can be optimised to work as efficiently and quickly
as possible. Second, the programmer is less constrained when writing
machine code programs. The ARM's instruction set does not place need
less restrictions on the programmer. This allows programs to be problem
orientated rather than implementation-orientated. In other words, the
programmer can write machine code.which matches the logical algorithm
of a problem solution, rather than trying to program around the peculiar
quirks of the processor's instruction set.

The 6502 in the BBC micros is an example of a Complicated Instruction Set
Computer (CISC). A few example comparisons between this and the ARM

...-,.,_ processor should help to make the RISC advantage clear.

RISC Versus CISC

Instructions on CISC processors, especially the 6502, tend to be tailored to
very specific purposes. They have a great many associated restrictions that
exactly define which situations they can or cannot be used in. This results in
a bewildering array of instructions which are very inflexible.

37

Archimedes Assembly Language

For example, the 6502 provides no fewer than four separate instructions to
transfer data between its three programming registers (A, X and Y).

TAX Transfer contents of A to X
TXA Transfer contents of X to A
TAY Transfer contents of A to Y
TYA Transfer contents of Y to A

Figure 3.8. 6502 instructions for inter-register data transfer.

Even with these instructions there is still a restriction. If we want to move
data directly between the registers X and Y, we are out of luck! Wouldn't it
be better if there were a single generalised instruction which could move
data between any two named registers? There is, because this is the
approach that the ARM takes by providing the single move instruction.

This may be a slightly trivial example, but it does help to illustrate how a
reduced number of instructions can provide added power. ·

Another example concerns the way instructions are allowed to reference
their operands. It would be possible for the operands of all instructions to
be held in memory and accessed directly by the ALU. Alternatively, some
CPUs, including the 6502, hold one operand in memory and the other one
in a register.

Both of these systems, however, inevitably result in added complexity in
the instruction set. Each of the instructions has to have a host of variants.
Each of these variants is a separate instruction, which performs the same
operation, but which obtains the operands by accessing memory in a differ
ent way.

As you might expect, the ARM does things in a very different way. No data
processing instruction accesses its operands from memory. Instead they
simply reference the data held in the processor registers. A few instruc
tions are then provided, which do have different addressing modes, to
transfer data to and from the registers and memory in the first place.

38

Internal Architecture

Instruction Length

Those of you have programmed the 6502 processor with the BBC micros
will know that its instructions can be one, two or three bytes long (eight, 16
or 24 bits) Being an eight-bit machine, however, it can fetch only one byte at
a time over the data bus. The fetch/ execute cycle of the 6502 is therefore:

1) Fetch byte one of instruction
2) Partially decode the instruction
3) If a complete instruction has not been obtained then fetch another

byte and repeat this step
4) Fully decode instruction
5) Execute instruction

Up to three separate memory accesses may be required to simply fetch an
instruction - let alone execute it!

The ARM haS a 32-bit data bus and so can use a more uniform scheme. All
ARM instructions are one word (32 bits) long. This allows a complete in
struction to fetched over the data bus in one go.

In order for this to happen, however, all ARM instructions must be stored
at word-aligned addresses in memory, that is, at addresses which are di
visible by four. (See Chapter Two).

This does not present any problems in practice. If the first instruction in a
piece of code is word-aligned then, as each instruction is one word (four
bytes) long, instructions consecutively following it will also be word
aligned. As we shall see later, the Archimedes BASIC assembler provides a
facility for controlling this for us.

Conditional Execution

A very special feature of the ARM is that the execution of any ARM
instruction can be made to be conditional on the current settings of the
status flags. This means that the instruction will only be executed if the
status flags are in a specific pre-defined state. If this is not the case, then
the ARM will ignore the instruction completely. The only effect of this being
the small time delay introduced.

39

Archimedes Assembly Language

Most processors have branching or jumping instructions which work on
the status flags. The ARM, however, generalises this idea to cover all
instructions. A detailed account of the conditional execution facility and its
use is given in Chapter Five.

Data Shifts

All data processing instructions supported by the ARM can have a shift
operation applied to one of the operands. This was mentioned earlier
when we looked at the ARM's barrel shifter.

Being able to apply shifts to the data used in any instruction, is a great
source of power for the programmer. It allows some quite sophisticated
effects to 0e achieved in very few instructions. We will look at the details
of the system, including the types of shifts available and their usage in
Chapter Seven.

40

4 · The BASIC Assembler

This chapter gives a brief introduction to the Archimedes BASIC assembler.
~ It is intended to give just enough information to allow very simple machine

code programs to be assembled on the Archimedes. lbis will make it poss
ible for you to try out some of the machine code instructions covered in the
next chapter, which deals with the ARM's instruction set. We will return to
the subject of the BASIC assembler in Chapter 13, where some of the more
complex aspects of the assembler will be described.

An assembler allows us to write our machine code programs in terms of
symbols, mnemonic names and labels. This is called the assembler source
code and cannot be executed directly by the processor. The assembler is
used to translate this source code into machine code which the processor
can obey. Each individual assembler statement is converted into the corre
sponding machine code instruction. This is illustrated in figure 4.1.

BASIC
program
containing
Assembler
Source
Code
Statements

Held in
Main Memory

~ Assembler

Executable
Machine
Code

Created in
Main Memory

Diagnostic
Assembler
Listing

Figure 4.1. Assembling source code into machine code.

41

Archimedes Assembly Language

Without an assembler, the process of writing machine code would be very
laborious and error-prone. The binary pattern representing each machine
instruction would have to be remembered or looked up. Also the addresses
and operands, used in the various instructions, would all have to be cal
culated by hand and given in numeric form.

Some typical machine code instructions are given in figure 4.2 in binary and
hexadecimal format. Opposite these are the same instructions in assembly
language. Don't worry about what the instructions do at this stage, they
are purely to illustrate the advantage of using an assembler.

Binary
%11100001101000000001000000000010
%11100000100000110001000000000101
%11100001010100010000000000000101

Hexadecimal
&E1A01002
&E0831005
&El510005

Assembler
MOV Rl,R2
ADD Rl,R3,RS
CMP Rl,RS

Figure 4.2. Instructions in binary, hexadecimal and assembler.

General Format of ARM Assembler Instructions

All ARM instructions have a similar format under the assembler. A mnemo
nic name is used to specify which instruction is being used. This is followed
by various operands which specify the data to be operated on.

The exact syntax of the operands varies with different instructions. A
range of special characters and suffixes can be used to select different
options with each instruction.

When an instruction refers to a processor register, there are several ways
of specifying the register's number. We can simply write the register's
number in the statement. This can be confusing, fi.owever, and so we can
also write the number as R<n>, where <n> is the register number, eg, RIO
for register 10. Finally, we can also quote a BASIC variable, the value of
which is taj<en to be the register's number. The following examples are all
legal under the assembler:

42

MOV 0,3
MOV RO,R3
MOV invader status,destroyed
MOV PC,R14 -

The BASIC Assembler

Note that the program counter, register Rl5, may also be referred to as
'PC' without setting up a corresponding variable.

The Assembler

The assembler provided on the Archimedes forms an integral part of the
BASIC interpreter. This has the great advantage of always being available
from within BASIC programs. BASIC and assembly code can be mixed freely.
This results in hybrid programs which are part BASIC, part assembler. Also
the full power of the BASIC interpreter is available from within the ass
embler allowing some very sophisticated facilities to be used.

The assembler source code is written as a series of numbered program
lines, just like a BASIC program. These are delimited by special cliaracters
to inform BASIC that assembly code is being used. When a program of this
sort is run, BASIC's assembler is called and the assembler statements are

--., converted into machine code instructions which are stored in the compu
ter's memory.

Entering the Assembler

The assembler is entered from BASIC by using the square brackets,[]. These
can be included, like any ordinary statement, anywhere in a BASIC pro
gram. BASIC will expect the program lines between these two brackets to
contain ARM assembler statements.

When the first square bracket is encountered, BASIC's assembler will start to
work its way through the following assembler statements, converting each
to the equivalent machine code instruction and storing it in memory. This
continues until the final square bracket is reached. This is the signal that
the assembler code section is over and normal BASIC statements are to be
executed again.

Listing 4.1. Entering the assembler from BASIC.

10 REM Entering The BASIC Assembler
20 REM (c) Michael Ginns 1987
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50 PRINT "Thi s i s BASIC"
60 [
70 ; THIS IS NOW THE ASSEMBLER
80 ; AND SO IS THIS

43

Archimedes Assembly Language

90 ; THESE LINES ARE ONLY ASSEMBLER COMMENTS
100 l
110 PRINT "BACK IN BASIC AGAIN"

Type in listing 4.1 to show how assembly code and BASIC can be mixed.
Wfi.en run, the program should produce the following output, although
some of the numbers may be different.

>RUN
THIS IS BASIC
00000000
00000000 ; THIS IS NOW THE ASSEMBLER
00000000 ; AND SO IS THIS
00000000 ; THESE LINES ARE ONLY ASSEMBLER COMMENTS
BACK IN BASIC AGAIN

The Assembler Location Counter - P%

In the previous example we said that the machine code, produced by the
assembler, was stored in memory. But where in memory? We must have
some system for telling the assembler the address at which we want the
machine code program to start. This is done on the Archimedes by borrow- --.
ing one of BASIC's integer variables, P%.

P% has a special significance to the assembler. The number which it con
tains is taken as the start address of the memory area which is to contain
the assembled machine code. If P% contains the number &8000, for
example, then it will store its first assembled machine code instruction at
location &8000 in memory.

Obviously, if we use the address stored in P% again to store the next ass
embled instruction, then it will overwrite the first. To prevent this happen
ing, the number of bytes used to store an instruction is automatically
added to P% after the instruction has been assembled. ARM instructions
are always four bytes (one word) long, and so P% will be incremented by
four each time.

Thus machine code instructions produced by the assembler are stored con
secutively in memory, starting at the address originally contained in P%. At
any given time, P% always holds the address in memory where the next
instruction will be assembled to.

We shall see several examples of P% in action later on, but first we must \
examine how we chose the the initial P% address. In other words, how do

44

The BASIC Assembler

""' we select the area of the computer's memory in which to store our machine
code programs?

Reserving Memory

The BASIC assembler makes no checks on the value of P% to determine
whether or not the memory which it points to is 'safe' to use. Machine
code can be assembled which will overwrite our assembler text program,
operating system workspace, or produce some equally disastrous result. It

--.. is, therefore, most important that a suitable area is found to hold our mac
hine code program.

On BBC micros, memory was in very short supply. Consequently, a whole
series of 'tricks' were developed for cramming machine code programs
into every conceivable space. On the Archimedes, memory is more plentiful
so these practices are not necessary.

The simplest way to reserve a safe area of memory for our machine code,
is to use a special form of the DIM statement. We are used to seeing DIM
when declanng arrays, but it can also take the form:

DIM <VAR> <number>

--.... Where <VAR> is any numeric variable and <number> is the number of
bytes of memory to be reserved.

,.......,,_ For example:

DIM code 1024

This will instruct BASIC to reserve 1024 bytes of memory, and will set the
variable 'code' to the address of the first of these bytes. The address return
ed is also guaranteed to be on a word boundary, so no further correction is
required. It is vital that the space we reserve is sufficient to hold the
machine code program produced by the assembler. If in doubt, always
reserve too much, rather than too little, memory.

We can now tell the assembler to use the reserved area of memory, for stor
ing machine code in, by simply saying:

P% = code

45

Archimedes Assembly Language

A typical Archimedes assembler program will, therefore, take the follow
ing form:

10 DIM code 1024
20 P\ = code
30 [
40
50 Lines containing the
60 assembler code program
80
90

Having found somewhere to store our machine code programs, let's move
on and actually write one! Type the program in listing 4.2. Don't worry at
this stage that the instructions are unfamiliar to you, we will have an in
depth look at the ARM instruction set later on. The program is only in
tended to illustrate general features common to most assembler programs.

Listing 4.2. Simple moving character.

10 REM Simple Moving Character Program
20 REM (c) Michael Ginns 1987
30 REM Dabs Press : Archimedes Assembly Language
40 REM
60 VDU 23,240,&3C3C;&FFDB;&l818;&E77E;12
70 OFF
80
90 vdu = 256

100
110 DIM start 100
120 P\=start
130 [
140 .loop
150 MOV RO, 419
160 SWI 6
170 SWI vdu+8
180 SWI vdu+32
190 SWI vdu+240
200 B loop
210 l
220
230 PRINT "PROGRAM ASSEMBLED AT : &"; - start
240 PRINT "PROGRAM SIZE IS : 11

; P\-start ; 11 Bytes"

Line Meaning

60-70 These perform some setting up operations for the program: re
definirig a character and turning the cursor off. This is an example
of the hybrid machine code and assembler programs we came

46

-

I ~

The BASIC Assembler

across earlier. Parts of the program which do not need to be
written in machine code can be left in BASIC.

90 Sets up the variable VDU to contain the value 256. This is used later
in the assembler program. The number 256 could have been used
directly in the assembler code, but the use of a named variable
makes the program more readable. Also, if we need to change the
number at some time, modifying the value in line 90 is all that
is required.

110 These contain the familiar commands to reserve some memory for
the machine code, and setting P% to the beginning of it.

130 At line 130 we leave BASIC and enter the assembler. The
instructions on lines 140 to 2000 are assembler mnemonics for
ARM machine code instructions.

210 We return back to BASIC again.

Assembler Listings

When the previous program was run, you should have been presented with
an assembler listing like the one given in figure 4.3. Again some of the ad
dresses may vary. The assembler produces a listing by default which shows
what has been assembled and at which address.

00008804
00008804
00008804 E3A00013
00008808 EF000006
0000880C EF000108
000088EO EF000120
000088E4 EFOOOlFO
000088E8 EAFFFFF9

.loop
MOV R0,tl9
SWI 6
SWI vdu+8
SWI vdu+32
SWI vdu+240
B loop

PROGRAM ASSEMBLED AT : &8804
PROGRAM SIZE IS : 24 Bytes

Figure 4.3. Listing produced for the character move program.

The first column of the listing is the address of each machine code instruc
tion assembled. This is the value of P%, printed out after each instruction
has been assembled. Remember that we said it was incremented by four
bytes each time?

47

Archimedes Assembly Language

The next column gives the actual machine code instruction stored in
memory. This is in hexadecimal.

The third column contains the assembler text which produces the instruc
tion. This is the mnemonic form of the instruction. Even though you may
not know what each of these instructions does, I am sure you will agree
that they are much more readable than their equivalent he~adecimal
machine code instructions!

Executing Machine Code Programs ,-.,

By running listing 4.2, we have converted the mnemonic assembler instruc-
tions into machine code instructions. However, as yet we have not exec- ,........,_
uted the machine code itself. To make the ARM processor to execute the
machine code, we use BASIC's CALL command.

The CALL statement is followed by the address, or a variable containing the
address, of the machine code program which we wish to execute. In the
case of listing 4.2, we assembled the machine code to the area of memory
pointed to by the variable 'start'. Thus to execute our machine code pro
gram, we type:

CALL start

This may be issued from within a program, or from command mode, but
remember that the source program must have been assembled first! Try
running the program again, then type 'CALL start' in command mode. You
will see a little man-shaped character moving across the screen - which is
all that listing 4.2 does!

Returning to BASIC

We will often want to go back to BASIC after executing machine code. We
may be executing the machine code routine from inside a BASIC program, or
may just want to return to BASIC's command mode.

When a machine code routine is called from within BASIC, a special address
is placed automatically in register R14. If we make the ARM jump to this
address, after our routine has been completed, then BASIC will be returned
to at the point immediately after the original CALL statement.

48

-

...--....

The BASIC Assembler

We can accomplish this simply by moving the contents of R14 back into RlS
- the program counter. This will cause the ARM to break off its normal
sequential execution of instructions, and start executing them from the
new address transfered into the program counter from R14.

The instruction to move data between two registers is described in detail
in Chapter Eight. However, for this specific purpose we always use the
following instruction:

MOV PC,Rl4

This can be regarded as a 'return to BASIC' instruction and should always
be used at the end of our machine code routines.

Comments in Assembly Language

In BASIC we often add comments to our programs using the REM statement.
REM stands for 'reminder' and these statements help to explain parts of the
program, making it more understandable.

In assembler, it is even more important to add comments to our programs.
The low-level nature of machine code makes assembler programs very un
readable at the best of times. Imagine corning back to modify one of your
programs several months after it was written. Without explanatory com-
ments it would be virtually impossible. ·

Comments are introduced into assembler programs using either a semi
colon(;), a backslash symbol(\), or by a REM statement. Note however,
that when teletext mode 7 is used the backslash is displayed as a 't I 2 charac
ter. Any text following these characters, up to a new line or a colon(:), is
ignored by the assembler, but is displayed in assembler listings.

The machine code instruction mnemonics in listing 4.2, are made clearer if
they are commented. A fully-commented version of listing 4.2 is given in
listing 4.3.

Listing 4.3. Fully commented version of listing 4.2.

10 REM Simple Moving Character Program
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
60 VDU 23,240,&3C3C;&FFDB;&1818;&E77E;12
70 OFF

AAL-0 49

Archimedes Assembly Language

80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

vdu = 256

DIM start 100
P%=start
[
.loop
MOV RO, #19
SWI 6
SWI vdu+8
SWI vdu+32
SWI vdu+240
B loop
l

Wait for l/50th of a second
(Reduces screen flicker)

VDU 8
VDU 32
VDU 240
Jump back to beginning of program

PRINT "PROGRAM ASSEMBLED AT : &"; - start
PRINT "PROGRAM SIZE IS : "; P%-start ;" Bytes"

Assembler Labels

When programming in assembler, we frequently want to refer to other
parts of the program - perhaps to jump to another section of the code, or
to access data stored elsewhere in memory.

We could do this by quoting the relevant address in a suitable ARM instruc
tion. However, we frequently do not know the absolute address at the time
of writing the assembler code. Also, if we make changes to the assembler
program, it is quite likely that the addresses of given instructions within it
will be different. To get around this problem, most assemblers (including
the Archimedes) allow us to define laoels within the assembler program.

A label is simply a name which is used to mark a given place within a sec-
tion of code. When the assembler encounters the label definition, it will -....
associate the name of the label with the current value of P%. Thus, the label
is made to point to the address at which it was defined within the ass
embler program.

Subsequently, the label can be referred to and the assembler will look up
then substitute the appropriate address. Changes to the program no long
er cause problems as re-assembling will automatically re-calculate the
addresses associated with all the labels.

On the Archimedes, labels are defined simply by writing their name pre
fixed with a dot character(.). Examples of valid labels are:

so

The BASIC Assembler

.explosion

.output

.loop2

.create_picture

The program in listing 4.4 contains a loop which repeatedly outputs '•'
characters to the screen. The address in the program, which the ARM must
loop back to, is marked using a label. The program can be RUN to assemble
it and then executed by typing 'CALL star'.

Listing 4.4. A simple loop using labelled addresses.

10 REM Using a Simple Loop to Print Stars
20 REM (c) Michael Ginns 1988
30 REM Dabs Press Archimedes Assembly Language
40 REM
50
60 DIM star 256 : REM Reserve space for machine code
70 P%=star : REM Set P% to start of reserved space
80 [
90 .beginning of loop \ Mark begining of program with a label

100 MOV RO,fASC("*") \Move ASCII code for '*' into reg RO
110 SWI "OS WriteC" \ Output character in RO to the screen
120 B beginning of loop\ Branch back to label at program start
130 1 - -

It is good practice to make labels 'meaningful', so that their name reflects
their purpose. The names are constructed following the same rules used
for choosing BASIC variables. In fact, defining a label in the assembler sim
ply sets up a variable of that name, the value of which is the address of the
label. Incidentally, this means that all variables used in a program can be
listed out by using BASIC's LVAR command after it has been assembled. Try
typing 'LVAR' after running listing 4.3 but before entering the CALL state
ment to execute it.

The ADR Directive

It is often very useful to be able to get the actual address associated with a
label into one of the processor registers. For example,, the label could mark
the beginning of a data table in a program. For this we would need to have
this address in a register to access entries in the table. The assembler pro
vides the ADR directive for this purpose. The syntax of ADR is:

51

Archimedes Assembly Language

ADR <register>, <address>

<Register> is the name of the register which is to contain the address and
<Address> is usually a label, the address of which is stored in the register.

Despite its appearance, ADR is not an ARM instruction. Neither does it
simply move the absolute address of the label directly into the register.
ADR is an assembler command (directive). When encountered the assembler
will calculate the difference (offset) between the specified label's address
and the current instruction address contained in P%. It will then assemble r"'l
an appropriate ARM instruction (either an add or subtract instruction). This
instruction, when executed, will use the offset in conjunction with the pro-
gram counter to reconstruct the original address of the label, and store it in r"'\.

the given register.

BASIC from the Assembler

We mentioned earlier that the assembler on the Archimedes was part of the
BASIC language. An added advantage of this arrangement is that many of
the functions provided in BASIC are also available in assembler.

Almost any BASIC function which returns a numeric value can be used
where a constant would normally be required in assembler. For example,
the following instruction moves the ASCII value of a 'C' (67) into a pro
cessor register.

MOV RO,f67

However, to avoid looking up the value, we could write:

MOV RO,ASC ("C")

This is a trivial example, but it should illustrate the principle. We can use
any expression required - as long as the final result yields a number which
is acceptable to the assembler. Some more examples of what is possible
may help. Again, don't worry about what the actual machine instructions
do, just look at the way in which their arguments can be given in terms of
BASIC functions.

52

MOV RO,fred
ADD R0,RO,X*2+5
AND RO,R0,#%10100101
MOV RO,&FFEE
MOV RO,# (start MOD 256)
MOV Rl,# (start DIV 256)
MOV R2,#INT(SIN((DEG(60))*100)

The BASIC Assembler

It is important to remember that all BASIC functions are evaluated at ass
embly time, not when the machine code is executed. The values returned
are simply written as constants into the machine code instructions.

Passing Data: BASIC to Machine Code Routines

We will often need to pass data from a BASIC program to a machine code
routine. The CALL statement has some advanced extensions for this pur
pose. It is described in detail in Chapter 13. If, however, we only want to
pass a few integer values to our macfiine code routine, then we can do this
using BASIC's resident integer variables A% to H%.

Just before transferring control to a machine code routine, BASIC copies the
values of the integer variables A% to H% into the processor registers RO to
R7. Thus, up to eight, 32-bit integers can be passed from BASIC to our
machine code routine very easily indeed.

Returning Values: Machine Code
Routines to BASIC

If we want to pass an integer value back from a machine code routine to
BASIC, then we can use the USR statement. It has the following syntax:

<var> = USR(<address>)

Titls is similar to CALL because it causes BASIC to execute a machine code
routine at a specified address. However, when BASIC is returned to, USR
returns the contents of register RO as a value. Thus, by storing a result in
RO, just before our machine code routine terminates, we can pass the result
back to BASIC.

Listing 4.5 illustrates parameter passing and result returning. When exe
cuted, the routine passes two integer values using variables A% and B%.

,.-..._ These specify a text character position on the screen. The routine moves

53

Archimedes Assembly Language

the cursor to this position, uses OSBYTE 135 to read the ASCII value of the
character , and returns it to BASIC via the USR statement.

As a demonstration of the routine, a message is printed at the top of the
screen. The routine is then used to read the characters from the top line of
the screen and re-print the m~ge at the bottom of the screen.

Listing 4.5. Passing data to and from machine code routines.

54

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

REM Passing Integers to Machine Code Routines using A%-Z%
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

vdu = 256
move_cursor = 31

DIM char read 256
P% = char read
[-
\ co-ordinates of the character to be read are passed
\ using A% and B% into registers RO and Rl respectivly
\ The character at this position is returned from reg RO
\ using the USR function

SWI vdu+move cursor
SWI "OS WriteC"
MOV RO,Rl
SWI "OS WriteC"
MOV RO,J135
SWI "OS Byte"
MOV RO,Rl
MOV PC,R14
l

MODE 1
PRINT "The Archimedes
FOR n = 0 TO 39
A% = n

\ Perform VDU 30
\ Output x co-ord from Register RO
\ Move y co-ord from Reg Rl to RO
\ Output y co-ord from Register RO
\ Move 135 into RO
\ Issue *FX 135 to read the character
\ Move read character into RO
\ Return to BASIC

Micro Computer System"

B% = 0
ascii USR(char_read) : REM Read char at position(A%,B%)

delay INKEY(20)
PRINT TAB(n,20) ;CHR$(ascii);

NEXT
PRINT

-

' 5 · The ARM Instruction Set

-. Much of the power of a processor depends on how it can be programmed
and the range of operations it can perform. In this, and the following chap
ters, we shall look at one of the most important aspects of the ARM - its
instruction set.

First, we shall cover some general features of ARM instructions. We shall
then move on to describe fully the function of each of the instructions and
how they may be used.

Conditional Execution

We have said that every ARM instruction is 32-bits long. These are divided
up into groups of bits, called fields. One of these fields is used to store the
instruction's condition code. (For a full description of the internal binary
format of ARM instructions, see Appendix D.

The condition code field is four bits wide and can therefore be used to spec
ify one of 16 conditions. The condition associated with an instruction must
be TRUE when the ARM attempts to execute the instruction. If the condition
is not met, then the ARM will not execute the instruction - it will effectively
be skipped.

The condition code works by specifying which flags in the ARM must be set
and which must be clear for the instruction to execute. Remember that the
flags in the status register reflect the result of previous instructions. In par
ticular, there is a comparison instruction which compares two operands
and records the result in the status flags. This result can then be acted upon
using conditional executed instructions. For example, the condition code:

%0100

,..-., means that the status register's negative flag (N) must be set for the in
struction to execute, that is, a previous ARM operation must have produced
a negative result.

55

Archimedes Assembly Language

The previous case was a very simple example of a condition which in
volved only one flag - the negative flag. Other condition codes specify
more complex relationships between the status flags. For example, a con
dition code of:

%1011

requires one of the following to be true for the instruction to execute:

Either:
or:
or:

N flag = SET and v flag = CLEAR
N flag = CLEAR and v flag = SET
Zflag = SET

This may seem a somewhat arbitrary relationship! However, if used after ,,.........,.
an instruction which compares two operands, it produces the result that
the instruction is only executed if it was found that operand one was less
than or equal to operand two.

Each of the 16 possible condition codes specifies a potentially very useful
condition on wruch the execution of any instruction can depend.

Condition Codes and the Assembler

An instruction is specified as being conditional in the BASIC assembler by
adding a two-letter suffix to the instruction's opcode mnemonic. There are
16 different suffixes available, one for each of the 16 possible condition
codes. These are shown in figure 5.1.

56

IQ: Equal
NE: Not equal

vs: Overflow set
vc: Overflow clear

AL: Always
NV

1-Il : Higher
IS : Lower than or same

IL: Plus
MI: Minus

Never

cs : Carry set
a: : Carry clear

GE : Greater than or equal
LT : Less than

GT: Greater than
IE : Less than or equal

The ARM Instruction Set

Figure 5.1. The assembler's condition code suffixes.

As an example, we could write:

SUBPL RO,Rl,R2

The SUB mnemonic means that the ARM subtraction instruction is being
used. (This is described in detail, along with the other instructions, in
Chapter Eight.)

The PL suffix means that the subtraction instruction is only to be executed if
the status register's negative flag is clear, that is, the result of a previous
operation gave a positive result.

Each of the available suffixes will now be listed together with a description
of the condition that they represent.

57

Archimedes Assembly Language

EQ:Equal

Condition : Z flag = Set

Instructions using this conditional suffix will be executed only if the zero (Z)
flag is currently set. This will be the case if a previous operation gave a
zero result. For example, subtracting two numbers of the same value can
set the Z flag. If used after a comparison (CMP) instruction, it indicates that
the two operands used in the comparison were the same.

Examples:

MOVS RO, Rl Move data from register Rl to RO
MOVEQ RO, fl IF zero was moved ·into RO then move one

into it

CMP R5,Rl0 Compare contents of registers R5 and RlO
ADDEO R5,RS,t2 IF they were equal then add two to R5

NE: Not Equal

Condition : Z flag = Clear

Instructions using this conditional suffix will be executed only if the zero (Z)
flag is clear. This is the reverse case of the EQ suffix. Used after a CMP in
struction, it indicates that the two operands used in the comparison were
not the same.

Example:

CMP R2,RO Compare contents of registers R2 and RO
SUBNE R2,R2,RO If not the same, then subtract them

58

The ARM Instruction Set

VS: Overflow Set

Condition : V flag = Set

Instructions using this conditional suffix will be executed only if the over
flow (V) flag is set. This flag is set as a result of an arithmetic operation
producing a result which cannot be represented in the 32-bit destination re
gister, that is, an overflow situation. In cases like these. the data placed in
the destination register may not be valid and thus require special corrective
action to retrieve the correct result.

VC: Overflow Clear

Condition : V flag = Clear

Instructions using this conditional suffix will be executed only if the over
flow (V) flag is currently clear. This is the reverse case of the vs suffix. It
indicates that no overflow has been detected.

59

Archimedes Assembly Language

l\1I:Minus

Condition : N flag = Set

Instructions using this conditional suffix will be executed only if the nega
tive (N) flag is set. This flag is set as a result of an arithmetic operation
producing a result which is less than zero. This could be the case if we sub
tract a number from a smaller one. Also logical operations, which cause bit
31 of the destination register to be set, may also set the negative flag.

Example:

SUBS RO,RO,tS Subtract five from the contents of RO
ADDMI RO,RO,tS If it gave a negative result,

Add five again

PL: Plus

Condition : N flag = Clear

Instructions using this conditional suffix will be executed only if the Z flag
is clear. This is the reverse case of the MI suffix. It indicates that an arith
metic operation produced a positive result, that is, one which is greater
than or equal to zero. Logical operations which clear bit 31 of the destina
tion register will give a positive result.

60

The ARM Instruction Set

" CS: Carry Set

., Condition : C flag = Set

Instructions using this conditional suffix will be executed only if the carry
-. (C) flag is set. This flag is set if an arithmetic operation produces a carry

from bit 31 of the destination register. If this occurs, then it indicates that
the result of the operation could not be represented in 32 bits. The carry can
be thought of as the 33rd bit of the result, that is, bit number 32_

The carry flag can also be set or cleared by shifting data into it u.Sing one of
the ARM's various shift operations. Full details of these will be given in

--... Chapter Seven.

Example:

ADDS Rl,Rl,f1024 Add 1024 to the contents of Rl
ADDCS R2,R2,tl If carry set, add one to register R2

CC: Carry Clear

Condition : C flag = Clear

Instructions using this conditional suffix will be executed only if the carry
(C) flag is clear. This will be the case if a previous operation didn't produce
a result which had a carry from bit 31. As we said previously, the carry is
also affected by various ARM shift operations.

61

Archimedes Assembly Language

AL: Always

Condition: ALWAYS

There will be many cases when we do not want to use conditionally exec
uted instructions. Instructions with this suffix, therefore, always execute,
and do not depend on the settings of any flags. As the majority of instruc
tions will have this suffix, it is taken to be the default by the assembler. If no
suffix is specified with an instruction, then the assembler uses the AL suffix.

Examples:

ANDAL RO, Rl, R2

ADD Rl,Rl,12

NV: Never

Condition : NEVER

ALWAYS perform RO = Rl AND R2

ALWAYS add two to Rl (default assumed)

This is not a very useful suffix, as it means that the instruction with which
it is used is NEVER executed. It is included for completeness, as it is the in
verse of the AL suffix.

Example:

MULNV Rl, R2, R3 Never perform the multiplication

62

1 ~

The ARM Instruction Set

Conditional Execution After Comparisons

The next group of condition codes are based on the states of several flags.
They are most often used after a CMP or CPN instruction to determine the
result of the comparison. A program is presented in Chapter Eight (listing
8.3.) which illustrates the use of the comparison instruction. This will also
be of use in understanding the operation of the various condition codes.

HI: Higher (Unsigned)

Condition: C flag= Set AND Z flag= Clear

Instructions using this conditional suffix will be executed if, as the result of
a previous comparison instruction between two numbers, it was found that
operand one was greater than operand two. It is important to note that
the condition assumes that the two numbers compared were unsigned, tha
is, all their 32 bits represent the number's magnitude and none are given o
ver to representing their sign in two's complement fori

Example:

CMP Rll,R6 Compare registers Rll and R6
MOVHI Rll,fO IF Rll > R6 then set Rll to zero

LS: Lower Than or the Same (Unsigned)

Condition : C flag = Clear or Z flag = Set

This is the reverse condition to the previous one. Instructions using this
suffix will be executed if, as the result of a previous comparison instruction
between two numbers, it was found that operand one was lower than or
the same as operand two. Again, it is important to note that the condition
assumes that the two numbers compared are unsigned. ,

Example:

CMP R4,R2 Compare registers R4 and R2
ADDLS R4,R4,fl IF R4 <= R2 then Add one to R4

63

Archimedes Assembly Language

GE: Greater Than or Equal (Signed)

Condition : N flag = Set AND V flag = Set
or: N flag = Clear AND V flag = Clear

Instructions using this conditional suffix will be executed if, as the result of
a previous comparison instruction between two numbers, it was found that
operand one was greater than, or equal to, operand two.

This time the condition is tested using the assumption that the two num
bers compared are signed quantities. That is they are represented in two's
complement form.

Example:

CMP RS,R2 Compare registers R5 and R2
SUBGE R5,RS,t2 IF RS>= R2 then subtract two from RS

LT: Less Than (Signed)

Condition: N flag= Set AND V flag= Clear
or: N flag = Clear AND V flag = Set

This is the reverse condition to the previous one. Instructions using this
suffix will be executed if, as the result of a previous comparison instruction
between two numbers, it was found that operand one was less than
operand two. Again, the condition assumes that the two numbers
compared are signed quantities represented in two's complement form.

Example:

CMP Rl,#0 Compare register Rl with zero
RSBLT Rl,Rl,tO IF Rl<O then Rl=O-Rl, ie, make positive

64

The ARM Instruction Set

GT: Greater Than (Signed)

Condition : N flag = Set AND V flag = Set
or : N flag = Clear AND V flag = Clear

and: Z flag= Clear

Instructions using this conditional suffix will be executed if, as the result of
a previous comparison instruction between two numbers, it is found that
operand one is greater than operand two. Once more, the condition is
tested using the assumption that the two numbers being compared are
signed quantities.

Example:

CMP RS,R9 Compare RS with R9
SWIGT 256+ASC(">") IF RS > R9 then print a > character

LE: Less Than or Equal To (Signed)

Condition : N flag = Set AND V flag = Clear
or: N flag = Clear AND V flag = Set
or : Z flag = set

Instructions using this conditional suffix will be executed if, as the result of
a previous comparison instruction between two numbers, it is found that
operand one is less than or equal to operand two. Once more, the condition
is tested using the assumption that the two numbers being compared are
signed quantities.

Example:

CMP R13,i100 Compare register Rl3 with 100
SUBLE R13 , R13, uo IF R13 <= 100 subtract 10 from R13

AAL-£ 65

Archimedes Assembly Language

Controlling the Status Flags

We said earlier that the status register flags reflect the result of previous
ARM instructions. A useful feature of the ARM is that the programmer can
define whether or not a given instruction is to be allowed to reflect the re
sults of its execution in the status flags.

This allows the results obtained by executing one instruction to be preser
ved while several other instructions are executed. This is particularly use
ful when several instructions are to be conditional on the same setting of
the status flags. By not allowing the instructions to modify the status flags
when they execute, we ensure that the original state of the flags is pre-
served and can be tested by each instruction in the chain. .-

This feature is controlled from the assembler by using an S suffix to the
instruction's opcode mnemonic. If the S suffix is present then the
instruction is allowed to affect the status flags. If it is absent, then the flags
will be unaffected by the execution of the instruction. (There are a few
obvious exceptions to this rule and t~ese will be described when the
instructions are covered later.)

A very common mistake made when writing ARM assembly code, is to for
get to add the S suffix to instructions. 6502 programmers, in particular, get
used to almost every instruction automatically affecting the status flags.
On the ARM this will not happen unless the S option is selected.

Example:

ADD RO,R3,R5 Doesn't affect status flags when executed
ADDS RO,R3,R5 Does affect status flags when executed

Mixing Conditional and S Suffixes

We can use both the S option and a conditional suffix in the same instruc
tion. In this case the two character condition suffix is written first, fol
lowed by the S character. For example:

ADDCCS RO,Rl,R2

66

The ARM Instruction Set

This add instruction will only execute if the cc (carry clear) condition is
true. If it does execute, then the result of the operation will be reflected in
the status flags - because the S option has been used.

Listing 5.1 provides a real example of the use of both conditionally exec
uted instructions and the S suffix. When executed, it repeatedly prints a let
ter of the alphabet to the screen. The number of letters printed and the
ASCil code of the character used are both prompted for before the program
is assembled.

The program contains conditional instructions to check that the Asen code
entered is in the correct range, that is, 65-90. If this is not the case, then the
program bleeps and a star (,.) character is used. The number of characters
to be output is also validated. If a negative number has been entered, then
this is converted to a positive value before continuing.

Listing 5.1. Letter print.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

REM Printing Letters - A demo of conditional execution
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

REM Define names for the registers used in the program
char 0
quantity = 1
count 2

REM Define constants for SW! routine and ASCII characters
vdu = 256
star = 42
beep = 7

DIM letters 256
P% = letters

[
CMP char, #ASC ("Z")
MOVGT char,tstar
SWIGT vdu+beep
CMP char, tASC ("A")
MOVLT char,tstar
SWILT vdu+beep
MOVS count,quantity
RSBMI count,count,tO

.print loop
SW! "OS WriteC"
SUBS count,count,tl

Compare character with "Z"
IF greater THEN - char = "*"

- issue 'beep'
Compare character with "A"
IF less THEN - char = "*"

- issue 'beep'
Move no. of chars ·into 'count'
IF count<O THEN count = 0- count

Print the character to the screen
Decrement the value of 'count'

67

Archimedes Assembly Language

320
330
340
350
360
370
380
390
400
410

BNE print loop
MOV PC,Rl4
l

REPEAT
PRINT

If NOT zero then repeat loop
RETURN to BASIC

INPUT "Enter ASCII code of letter to be used :",A%
INPUT "Enter number of letters to be printed :",B%
CALL letters
UNTIL FALSE

Instruction Groups

The ARM processor actually supports 25 different instructions. Each in
struction may be modified by using condition codes, S suffixes, shifted
operands and so on, but there are still only 25 fundamental operations
which can be carried out. These can be conveniently grouped as follows:

1) Data processing instructions
2) Transfers between processor and memory
3) Multiple transfers l:>etween processor and memory
4) Branches
5) Software interrupts

The following chapters describe the instructions in each of these groups.

68

Data Processing - Format t::;2]

This is by far the largest group of instructions. It contains instructions
which manipulate or transform data in some way. There are 18 data pro
cessing instructions listed below in figure 6.1.

ADD AOC
SUB SBC
RSB RSC

MOV MVN
CMP CPN

AND ORR
EOR

BIC TST
TF.Q

MUL MLA

Figure 6.1. Data processing instructions.

Apart from a few exceptions, all instructions in this group have the same
assembler format. This can be summarised as:

<OPCODE Mnemonic> <Destination> <Operand 1> <Operand 2>

Opcode Mnemonic
The opcode mnemonic is the name of the instruction to be used. It is one of
those given in figure 6.1. The various option suffixes can be added to this to
modify the operation of the instruction.

69

Archimedes Assembly Language

Destination

The destination is simply the name of a register, that is, RO to R15. This
specifies the register into which the result of the instruction will be placed.
The destination register may be the same as one of the registers containing
the operands.

Operand One

Operands one and two specify the two pieces of data which are to be oper- "
ated on by the instruction to produce the result.

Operand one must be the name of one of the registers RO to R15. It is the
data contained in this register which will eventually be used as operand
one by the instruction.

· Operand Two

Operand two can be specified in three different ways:

1) As a simple register
2) As an immediate constant
3) As a shifted register operand

Before looking at the specific instructions in the data processing group, we
must examine these three ways of specifying the second operand. This will
become a little involved as there are a large number of different options
and formats. However, be patient - we will look at some 'real instructions'
very soon!

Operand Two: A Simple Register

At its simplest level, operand two may also be the name of the register
which contains the second operand for the instruction. Using this format,
some typical instructions would be:

70

ADD Rl,R2,R3
AND R2,Rl0,R6
EOR Rl2,R12,RO

Rl =R2+R3
R2 = RlO AND R6
R12 = Rl2 EOR RO

-

Data Processing - Format

Don't worry if the actual instructions are unfamiliar to you - they will be
described later on. The important thing to note is, however, the format of
the data processing instructions and their operands.

Operand Two: An Immediate Constant

The second form of operand two is to use it as an immediate constant. This
means that the value of operand two is given directly in the assembler in
struction. This is then encoded into the machine code equivalent of the in
struction at assembly time. From this point on, the data used as operand
two is fixed and doesn't depend on the contents of any registers.

Using immediate constants with data processing instructions from the ass
embler is very easy. Instead of writing a register name for operand two,
we simply write '#n'. Where the'#' informs the assembler that an imme
diate operand follows, and 'n' is the value to be used as the immediate con
stant. Examples of data processing instructions using immediate constant
operands are:

MOV RO,tlOO Move 100 into register RO
ADD R5,R3,tl024 Add 1024 to R3 and store result in R5
AND R0,R4,t%101 RO becomes R4 logically ANDed with %101

Range of Immediate Constants

There is a very important restriction imposed on the use of immediate
operands. To understand this, we must fook at how the immediate con
stant is encoded within an ARM instruction.

We have seen that the 32 bits comprising an instruction are split up into
fields. One such field is used to store a binary representation of the
immediate constant used with the instruction. Obviously, the number of
bits allocated to this field will determine the range of numbers which can be
represented in it. In practice, 12 bits are allocated for this purpose.

If all 12 bits of the field were used to simply store the binary representation
of the immediate constant, then numbers in the range zero to 4096 could be
used. Compared with what is possible using the 8-l>it 6502 processor, this
may seem very good. Remember, however, that the ARM is a 32-bit mac
hine and, as such, we are used to manipulating 32-bit data.

71

Archimedes Assembly Language

The problem is that, without allocating extra bits, we cannot increase the
number of values which can be represented in the immediate operand field.
However, we can widen the range over which numbers can be represented,
providing we accept that not every single individual number in the new
range can be represented. This is the approach that the designers of the
ARM decided to follow.

The 12-bit immediate operand field is split to create two fields of eight and
four-bits, (see figure 6.2). The eight-bit data field is used to represent the
numeric constant in binary. The four-bit field specifies one of 16 different
positions in a 32-bit word at which the data in the eight-bit field should be
placed. The scheme is summarised in figure 6.3.

72

<- 12-bit immediate operand field ->
bit 11 bit 8 bit 7 bit 0
<Position field> <Data field>

Figure 6.2. The split immediate operand field.

Bit31 BitO
........................ 76543210
10 765432
3210 7654
543210 76
76543210
.. 76543210
.... 76543210
...... 76543210
........ 76543210
.......... 76543210
............ 76543210
.............. 76543210
................ 76543210
.................. 76543210
.................... 76543210
...................... 76543210 ..

Position
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 63. The position system used in immediate operands.

Data Processing - Format

An example should help clarify this somewhat confusing system! Suppose
we wanted to represent the number 173. In pure binary this is:

%00000000000000000000000010101101

This can be represented as a data field of 173 (%10101101) and requires no
\ position shift. It would be represented as:

Immediate operand: %0000 10101101

Data= 173 = %10101101
Position = 0 = %0000

~ However, suppose now that we wanted to represent the number 19968. In
binary this number is:

%00000000000000000100111000000000

This corresponds to the data value 78 (%01001110) together with a shift
number of 12, so that the data appears in· the correct place in a 32-bit word.
It would therefore be represented as:

Immediate operand: %1100 01001110

Data= 78 = %01001110
Position = 12 = % 1100

Using this system we can represent values over the entire 32-bit range,
although not every value in this range is allowed. As numbers get larger,
we loose more and more 'low-order' bits from their representation. For
example, all the numbers in the range zero to 255 can be represented.
However, numbers in the range 256 to 1023 require a shift number of 15 to
bring them into the correct position. This makes the two bottom bits of the
32-bit word unusable. In this range, therefore, only numbers which are
divisible by four can be represented. Similarly, in the range 1024 to 4095,
only numbers divisible by 16 can be stored and so on.

When we use immediate operands, we simply quote the number required.
The assembler then tries to generate appropriate corresponding data and
shift numbers. If this is not possible, with the number 257 for example, then
an error is produced at assembly time.

73

Archimedes Assembly Language

Operand Two: A Shifted Register Operand

The third format of operand two in data processing instructions, is the
shifted register operand. We have just seen that the ARM has the ability to
apply bit shifts to data.

To specify a shifted operand, we use the normal syntax for a data process
ing instruction, but give operand two in the following form:

<Register>,<Shift>

The actual value of operand two is the contents of <Register>, after the
shift operation specified in <Shift> has been applied to it. Note that the
actual contents of the named register are not altered. It is just the value
used by the instruction which is shifted. An example of an instruction using
a shifted register operand is given below. Don't worry at this stage what
the actual shift operation does!

ADD RO Rl
Opcode Destination Operand l
Mnemonic

R4 LSR#2
<Register> <Shift>

Operand 2

<Shift> specifies the type of shift which is to be applied to the contents of
the register. It also defines how many places the data shifts by. Each shift I'"""\
type has a mnemonic name (like the instruction opcode mnemonic) which is
used to select it. A complete list of the shift types available is given in figure
6.4 on the next page.

Following the name of the shift operation is a field which defines the num
ber of places to shift the data by. As the register to be shifted is 32-bits wide,
shifting the contents by anything greater tfi.an 32 places is pointless.

A fixed number of shift positions can be specified by giving an immediate
number in this field. This is done by writing a '#' followed by the number of I"'""'\
places to shift by. For example, to shift by 23 places use '#23'.

Alternatively, a register name can be given. In this case the contents of the
named register's least significant byte (at the time the instruction is exec
uted) defines the number of places to shift by. That is, if the register con
tained 14, when the instruction was executed, then an appropriate shift of
14 places would be performed.

74

Data Processing - Format

Shift
mnemonic

ISL
ASL
LSR
ASR
ROR
RRX

Shift operation
notes

Logical shift left
Arithmetic shift left (identical to ISL)
Logical shift right
Arithmetic shift right
Rotate right
Rotate right with extent
(one position only)

Figure 6.4. Shift operations supported by the ARM.

A couple of examples of typical shifted operand instructions should make
the syntax clear:

Example!:

ADD RO, Rl, R3, LSL i3

This instruction performs the following:

1) Take the contents of register R3

2) Perform the ISL shift on this data, shifting it by three places

3) Add this modified value to the contents of register Rl

4) Store the final result in register RO

Example2:

ADD RO, Rl, R3, LSL RlO

This instruction performs the following:

1) Take the contents of register R3

2) Perform the ISL shift on this data. The number of places to shift by is
defined by the contents of the low byte of register RIO. For example,
if RIO contained 27 then a shift of 27 places would take place

75

Archimedes Assembly Language

3) Add this modified value to the contents of register Rl

4) Store the final result in register RO

The next chapter contains detailed descriptions of each of the available
shift operations.

76

~ 7 · Shift Instructions

Data Processing Instructions

We have seen how shifts can be used with instructions. We can now look at
each of the different types of shift operation supported by the ARM. Listing

~ 14.2 in Chapter 14 illustrates the use of conditional assembly. The
program, however, also provides a pictorial demonstration of various
types of shift operation. This program Should be used to try out some of the

..--... theory presented in the following sections.

Logical Shift Left: LSL

Syntax:

Where:

LSL in
LSL Rx

n is an immediate number and,
Rx is a register (RO to RlS)

A logical shift left operation of 'n' places moves all the bi
the left. An extra zero bit is shifted into bit zero of the d

..-... hand side. Bit 31 of the data, lost from the left-hand end, •
carry flag. For example:

,.-..... LSL U

Before: X · < - b31 b30 b29 b28 b27 b4 b3 b2 b 1

,..-.... After: b31 b30 b29 b28 b27 b26 b3 b2 bl bO 0

Carry Data word

77

Archimedes Assembly Language

Example:

Before: X

After: 1

10110011001100011100110101011101

01100110011000111001101010111010

Carry Data word

The LSL operation has the effect of multiplying the data by two for each
place it is shifted. That is, a shift left of five places would multiply the data
by 2"2"2"2"2 = 32. The previous example showed a shift of one place, ie, a
multiplication of two. In general, a shift of 'n' places left, has the effect of
multiplying the data by two to the power of 'n'.

This assumes that no significant bits are lost from the left-hand side of the
data. The new number must be small enough to fit into 32 bits.

The shift operation treats the data as a series of 32 arbitrary bits. If we in
terpret the bits as forming a binary number, then multiplication occurs.
However, if we try to extend this to shifting data which represents two's
compliment negative numbers, then the multiplication rule can break down
and errors occur.

This happens because inappropriate bits may be shifted into the sign bit (bit ~
31) from bit 30. This can change the sign of the data. For example, the fol
lowing shift changes the original negative number into a positive one:

Before:

After:

x
1

10110011001100011100110101011101 (negative number)

01100110011000111001101010111010 (positive number)

Carry Data word

N ates: The mnemonic ASL (arithmetic shift left) may be used in place I
LSL. This is simply another name for the same shift operation d
has exactly the same effect.

78

-

Shift Operations

Logical Shift Right: LSR

........_ Syntax:

LSR tn
LSR Rx

Where: n is an immediate number and,
Rx is a register (RO to RlS)

A logical shift right operation of 'n' places moves all the bits in the data 'n'
positions to the right. An extra zero bit is shifted into bit 31 of the data on
the left-hand side. Bit zero of the data, lost. from the right-hand end, is

-... shifted into the carry flag. For example:

,,,.-...

~

,.......,_

...........

..........

.,

. -

LSR fl

Before: 0 -> b31 b30 b29 b28 b27 b4 b3 b2 bl bO -> x
After: 0 b31 b30 b29 b28 b5 b4 b3 b2 bl bO

Data word Carry

Example:

Before: 10110011001100011100110101011101 x
After: 01011001100110001110011010101110 1

Data word Carry

The LSR operation has the effect of dividing the data by two for each place
it is shifted. The previous example showed a shift of one place right, ie, a
division of two. Obviously only integer division is performed. The effect is
the same as if the BASIC DIV operator was being used. In general, a shift of
'n' places right will divide a number by two to the power of 'n' .

Once again, the shift only produces the division operation for unsigned
numbers. If, for example, the data is a negative number, stored in two's

79

Archimedes Assembly Language

compliment form, then when a zero is shifted into bit 31 on the left-hand
side, the sign will be changed. For example:

Before: X 10110011001100011100110101011101 (negative)

01100110011000111001101010111010 (positive) After: 1

Carry Data word

80

'

.........

--....

~

~

·"""\

..-....,

Arithmetic Shift Right: ASR

Syntax:

ASR tn
ASR Rx

Where: n is an immediate number and,
Rx is a register (RO to Rl5)

Shift Operations

An arithmetic shift right operation of 'n' places moves all the bits in the
data 'n' positions to the right. The original conte.nts of bit 31 are shifted
back into the data on the left-hand side. Bit zero of the data, lost from the
right-hand end, is shifted into the carry flag.

The shift is called an 'arithmetic' shift because it preserves the original ar
ithmetic sign of the number. If the number is negative then bit 31 will be a
one. In this case an extra one will be shifted into the word on the left-hand
side - maintaining the negative representation.

Similarly, if the number is positive, bit 31 will be zero. In this case an extra
zero will be shifted into the left-hand side of the word, again preserving
the original sign.

ASR U

Before: b31-> b31 b30 b29 b28 b27 b4 b3 b2 bl bO -> x
After: b31 b31 b30 b29 b28 b5 b4 b3 b2 bl bO

Data word Carry

Example:

Before: 10110011001100011100110101011101 x
After: 11011001100110001110011010101110 1

Data word Carry

The ASR operation, like LSR, divides the data by a factor of two for each
position shifted. Once again integer division is performed .

AAL-F 81

Archimedes Assembly Language

This time, however, the shift takes into account the fact that the data may
be representing a two's complement negative number. It extends the origi
nal sign of the number from bit 31 into bit 30. This ensures that the shift per
forms division correctly for both positive and negative numbers.

82

-

'\

........_,

.----.

Rotate Right: ROR

Syntax:

ROR in
ROR Rx

Where: n is an immediate number and,
Rx is a register (RO to RlS)

Shift Operations

A rotate right operation of 'n' places moves all the bits in the data 'n' posi
tions to the right. Unlike the shift operations, bits lost from one end of the
data word reappear at the other end. Thus the bits are rotated, rather than
shifted, in ,a cyclical manner.

The value ·of bit zero, lost from the right-hand end, is shifted back into bit
31 at the left-hand side. A copy of the original contents of bit zero are also
shifted into the carry flag. For example:

ROR 11

Before: b31 b30 b29 b28 b27 b4 b3 b2 bl bO x
After: bO b31 b30 b29 b28 bS b4 b3 b2 bl bO

Data word Carry

Example:

Before: 00110011001100011100110101011101 x
After: 10011001100110001110011010101110 1

Data word Carry

Rotational operations do not have any arithmetical significance. They are
used simply to manipulate bit patterns.

83

Archimedes Assembly Language

Rotate Right With Extend (One Bit Only): RRX

Syntax:

RRX

This shift operation is unique in that it is not possible to specify the number
of places for it to shift data by! The RRX operation always rotates the data
right by one position.

The operation of RRX is similar to that of ROR except that the carry flag acts
as a '6it 32' in the rotation. The value of bit zero, lost from the right-hand
end, is shifted into the carry flag. The value of the carry flag is shifted into
bit 31 on the left-hand side. For example:

Before:

After:

Example:

Before:

After:

RRX

b31 b30 b29 b28 b27 b4 b3 b2 bl bO

x b31 b30 b29 b28 b5 b4 b3 b2 bl

Data word

00110011001100011100110101011101

X0011001100110001110011010101110

Data word

x
bO

Carry

x
1

Carry

This shift operation effectivly allows 33-bit rotation to be performed by in
cluding the carry flag as an extra bit. Remember, however, that only single
position rotations may be performed at once.

You will be relieved to know that we have now completed our general look
at data processing instructions and associated operands. We can now
move on to the next chapter to look at the operation of the 18 data pro
cessing instructions themselves.

84

- 8 · Processing Instructions

In this chapter we will look at the function and use of each of the ARM's
.~ data processing instructions. For each instruction the assembler syntax is

given. Within this, the phrase {<suffix>} means that the conditional suf
fixes and/ or the S suffix may be used if required. The names of any status

~ flags affected are also listed.

ADD: Addition

Syntax:

ADD {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand one + operand two

~ Flags: N, Z, C, V

The ADD instruction performs the arithmetic addition of its two operands,
and stores the result in the destination register. The result is valid if un
signed numbers or signed, two's compliment, numbers are added. The re
sult may always be interpreted in the same way as the operands.

Examples:

RO,R3,R4 RO = R3 + R4 ADD
ADDS
ADDMI
ADD

RO,R3,i2 RO = R3 + 2 (Setting status flags)
RO,RO,il If minus flag set Increment RO
RO,RO,RO,LSLU RO = RO + 2*RO (RO = 3*RO)

Listing 8.1 demonstrates the operation of the ADD instruction. From BASIC,
,,,-..... two numbers are entered. A machine code routine is then called to add

them together. The result is stored back, via USR ready for BASIC to print.

Listing 8.1. Simple two-word addition.

10 REM Simple 32-bit addition using ADD
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language

85

Archimedes Assembly Language

86

40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210

REM

DIM add 256
P% = add
(
\ Two 32-bit numbers to be added are passed from A% and B%
\ into registers RO and Rl when the routine is called
\ The result, stored in RO, is passed back to BASIC by USR

ADD RO,RO,Rl
MOV PC,Rl4
J

REPEAT
INPUT "Number 1 : " A%
INPUT "Number 2 : " B%
PRINT "Result of Addition is
UNTIL FALSE

USR(add)

.-..

Processing Instructions

ADC: Add with Carry

Syntax:

ADC {<suffix>} <destination>, <operand!>, <operand2>

Operation:

Flags:

destination = operand one + operand two + carry

N,Z,C,V

The ADC instruction is almost the same as the previous ADD instruction. It
performs the arithmetic addition of its two operands, but also adds in the
carry flag. ff the carry flag is set, then it is treated as a one in the addition.
Otherwise, it is treated as a zero. The result is again stored in the destina
tion register.

The ADC instruction allows numbers to be added together which require
more than a single word to represent them. For example, we may want to
perform 64-bit addition which involves two pairs of 32-bit words. This
operation can be summarised as follows:

Upper 32-bit word Lower 32-bit word

............. 01101010101000111001110011001100 10110101000110001100011100011110
01010111000110100100011001100011 10101010101010011110011010011001

11000001101111011110001100110000(1) 01011111110000101010110110110111

Carry from bit 31 of low word
into bit zero of high word

To perform the addition, we add together the lower two words of each
operand using the normal ADDS instruction. This may set the carry flag to
indicate that a carry has been produced from bit 31. This will then need to
be added in when the addition of the upper two words is performed. To do
this we simply add the two high words using the ADCS instruction. This au
tomatically takes care of any carry digit which may have been produced.

Example 1:

ADDS result low,lowl,low2 Add low words
ADCS result=high,highl,high2 Add high words + carry

87

Archimedes Assembly Language

Titls system can be extended to add together operands which require any
number of words to represent them. We simply repeat the ADCS instruction
as many times as required. ·

Example2:

ADDS
ADCS
ADCS

Rl,R4,R7
R2,RS,R8
R3,R6,R9

Add low words
Add middle words + carry
Add high words + carry

Tiris will add together the two 96-bit numbers represented in registers R4,
RS, R6 and R7, RB, R9. The 96-bit result is produced in registers RI, R2, R3.
When programming the 6502, we frequently have to concatenate addition
in this way as only eight-bit quantities can be processed at one time. On the
ARM, however, 32-bit numbers can be processed directly and so the
technique is used less often.

Note: It is vital that the S suffix is used with the instructions. If this is not
done, then the carry flag setting will not be affected and so won't
be carried forward into the next addition.

88

Processing Instructions

SUB: Subtract

Syntax:

SUB {<suffix>} <destination>, <operand!>, <operand2>

Operation: destination = operand one - operand two

N,Z,C,V Flags:

The SUB instruction performs the arithmetic subtraction of its second oper
and from its first operand. The result of the operation is stored in the desti
nation register. The result is valid if unsigned numbers or signed, two's
compliment, numbers are added. The result may always be interpreted in
the same way as the operands.

Examples:

SUB R10,R2,R4
SUBMI Rl,R3,t1024
SUB RO,RO,RO,LSLtl

RlO = R2 - R4
If neg flag set Rl = R3 - 1024
RO = RO - 2*RO (RO = -RO)

Listing 8.2 demonstrates the operation of the SUB instruction using BASIC
and machine code. The result is passed back for BASIC to print.

Listing 8.2. Simple two-word subtraction.

10 REM Simple 32-bit subtraction using SUB
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM subtract 256
70 P% = subtract
80 [
90 \ Two 32-bit numbers for subtraction passed from A% and B%

100 \ into registers RO and Rl when the routine is called
110 \ The result, stored in RO, passed back to BASIC by USR
120 SUB RO,RO,Rl
130 MOV PC,R14
140 l
150 REPEAT
160 INPUT "Number 1 : " A%
170 INPUT "Number 2 : " B%
180 PRINT "Result of Subtraction is USR (subtract)
190 UNTIL FALSE

89

Archimedes Assembly Language

SBC: Subtract with Carry

Syntax:

SBC {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand one - operand two - not (carry)

Flags: N,Z,C,V

The SBC operation allows multi-word subtraction to be performed in the
same way that ADC allows multi-word addition. This time the carry flag is
used to indicate that a borrow' occurred when subtracting two words, and
that this borrow should be taken into account when subtracting the next
two words.

The subtract operations, SUB and SBC, affect the carry flag in one of two
ways as follows:

If a borrow is generated, then the carry is clear (O)
If a borrow isn't generated, then the carry is set (1)

When we perform multi-word subtraction, a borrow from one word means
that we want to subtract an extra one from the next word. However, as A
we have just seen, a borrow results in the carry flag being zero, not one as
we would have liked.

To compensate for this, the ARM actually inverts the carry flag before using
it in the SBC operation. The SBC operation therefore, performs the
following operation:

destination = operand one - operand two - not (carry)

This system can be extended to subtract operands which require any num
ber of words to represent them. We simply repeat the SBCS instruction as
many times as reqtiired.

Example:

SUBS result low,lowl,low2 Subtract low words
SBCS result=high,highl,high2 Subtract high words + carry

Again, it is vital that the S suffix is used if instructions are to be able to
affect the status flags.

90

Processing Instructions

RSB: Reverse subtract

Syntax:

RSB {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand two - operand one

Flags: N, Z, C, V

This instruction is similar to the SUB instruction in that it also performs the
subtraction of its operands. However, this time the subtraction is reversed,
ie, operand one is subtracted from operand two.

This may seem a waste of an instruction. However, remember that oper
and two can be specified in several different formats, and it is thus much
more flexible than operand one. By providing the RSB instruction, we en
sure that either of the operands in the subtraction operation can be spec
ified using the flexible format allowed by operand two.

Example:

RSB RO,RO,iO
RSB R6,R3,R7,LSL#2

RO = 0 - RO . (RO = -RO)
R6 = (R7*4) - R3 .

91

Archimedes Assembly Language

RSC: Reverse subtract with Carry

Syntax:

RSC {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand two - operand one - not(carry)

Flags: N,Z,C,V

The RSC instruction performs a reverse subtract operation while taking ac
count of a previous borrow in the carry flag. It corresponds to the SBC in
struction in the same way that RSB corresponds to SUB.

It allows reversed subtraction to be performed on multi-word operands.

Example:

92

RSBS result low,lowl,low2 Reverse subtract low words
RSCS result=high,highl, h1gh2 Reverse subtract high words

and carry

-

Processing Instructions

~

MOV: Move data

Syntax:

MOV {<suffix>} <destination>, <operand.2>

,.-... ·Operation: Destination = operand two

......_,

.._

Flags: N, Z, (C)

The MOV operation is different to normal data processing instructions in
that it does not have an operand one. It is used to move data into the desti
nation register .

The source of the data to be moved is given in operand two. Like any oper
and two, this can be specified as a register, an immediate operand or as a

~ shifted register. Thus, immediate constants can be moved into registers or
data can be moved between two registers.

The normal shift operations can be used to modify the data moved to the
""""' destination register.

When using shifts, it is frequently useful to specify both source and destina
tion registers as being the same. This has the effect that the specified shift is
applied to the contents of the register and the results written back to the
same register. Thus, we can achieve.the same results as dedicated shift
instructions on other processors. ·

If a number is moved into R15, then the program counter and/ or the status
flags can be modified directly. A frequent use of this is to move the return
address of a subroutine from the link register (R14) back into the program
counter (R15). See Chapter Nine for a full description of using R15 in data
processing instructions.

Examples:

M'.)V

MOV
MOV
MOVEQS

MOV

Rl2,RO
R6,R6,ASL#2
RO,R2,ASL RS
R0,R4

Rl5,Rl4

Move the contents of RO into R12
R6 = R6 * 4
RO = R2 * (2~R5)

If z flag set THEN RO=R4
(setting flags)
Return from subroutine

93

Archimedes Assembly Language

MVN: Move Inverted Data

Syntax:

MVN {<suffix>} <destination>, <operand2>

Operation: Destination= not (operand two)

N,Z,(C) Flags:

This instruction performs an identical function to MOV, except that the ARM
automatically inverts all of the bits moved from the source register. This is
done to allow negative immediate numbers to be moved into registers. An
example will show why this could be a problem without the MVN instruc
tion. Consider the two's compliment binary representation of minus one:

%11111111111111111111111111111111

Bearing in mind the scheme for representing immediate operands on the
ARM, this number could not be used. Similarly, most negative numbers are
not directly representable as immediate operands. However, by using MVN
we can use an appropriate positive operand, in this case zero, and the ARM
will invert it to obtain the desired value, ie, minus one.

Under the two's complement scheme, the number -n is represented as:

NOT (n) + 1

Thus to make the MVN use a value of-n we in fact specify n-1. So to move
a value of -10 into a register, the immediate operand used with the MVN
instruction is 10-1 = 9.

Examples:

94

MVN R0,#0
MVN Rl,#9
MVN R3,R5
MVN R6,R7,LSR #1

Move minus one into register RO
Move -10 into register Rl
R3 = not(RS), ie; RS with bits inverted
R6 = not(R7 div 2)

Processing Instructions

CMP: Compare

Syntax:

CMP {<suffix>} <operandl>, <operand2>

Operation: Reflect result of operand one - operand two

Flags: N,Z,C,V

This is a very important instruction connected with conditional instruction
execution. It is an exception to the normal data processing instructions in
that it does not have a destination register.

The instruction is used to compare two operands, and to reflect the result
of the comparison in the status flags. This result can then be acted upon
using the conditional execution system which is available with all instruc- .
tions.

The CMP instruction performs the following 'notional' subtraction:

Operand one - operand two

The subtraction is notional because the result of the operation isn't retain
ed anywhere. This explains why there is no destination field: The instruc
tion merely conditions the status flags appropriately, and then discards the
actual result.

As far as the programmer is concerned, the subtraction which CMP per
forms is not important. It is enough to know that the instruction is used be
fore conditional statements to compare two operands. This makes state
ments execute conditionally on the result of the comparison.

The only thing to remember is that the various condition codes refer to
operand one compared with operand two. Thus, the LT (less than) suffix
Will execute if operand one is less than operand two.

Since the purpose of the CMP instruction is to affect the status flags, the S
suffix does not have to be used. The instruction will modify the status flags
whether S is present or not.

You can investigate the operation of CMP, in conjunction with conditional
statements, by typing in listing 8.3. When run, the 16 conditions supported

95

Archimedes Assembly Language

by the ARM are displayed. A pair of numbers are then prompted for. When
these have been entered, a machine code routine is called. This compares
the two numbers, then attempts to execute a series of 16 instructions which
print a tick on the screen. Each of these instructions is executed on one of
the 16 condition codes. The effect of this is that any condition which is sat
isfied has a tick printed next to it on the screen.

By varying the two numbers entered you can see how each of the
conditional suffixes works after a CMP instruction. Try comparing minus
one with one to show the difference between signed and unsigned
condition codes.

Listing 8.3. A demonstration of comparisons and condition codes.

96

10
20
30
40
50
60
70
80
90

REM Demonstration of CMP and conditional suffices
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

REM Define character 255 as a small 'tick' shape
VDU 23,255,0,0,1,3,6,108,56,16

REM Set up constants
vdu = 256 100

110
120
130
140
150
160
170
180
190
200
210
220 \
230 \
240 \
250 \
260
270
280
290
300
310
320
330
340
350

tick = 255

DIM compare 512
P% = compare
[
\ The two numbers to be compared are passed
\ into registers RO and Rl from A% and B% when
\ the routine is called.

CMP RO,Rl ; Compare the two numbers

There now follows one pair of instructions for each
condition code. These test the condition and if it
succeeds, performs VDU 255 ie, outputs a tick
A SWI command to start a new line is also called

SWIEQ
SWI

SWINE
SWI

SWIVS
SWI

vdu+tick
"OS NewLine"

vdu+tick
"OS NewLine"

vdu+tick
"OS NewLine"

Processing Instructions

360 SWIVC vdu+tick
370
380

SW! "OS_NewLine"

390 SWIPL vdu+tick
400 SW! "OS NewLine"
410
420 SWIM! vdu+tick
430 SW! "OS NewLine"
440
450 SWICS vdu+tick
460 SWI "OS_NewLine"
470
480 SWICC vdu+tick
490 SW! "OS NewLine"
500
510 SWIAL vdu+tick
520 SW!
530

"OS_NewLine"

540 SW INV vdu+tick
550 SW! "OS NewLine"
560
570 SWIHI vdu+tick
580 SW! "OS NewLine"
590
600 SW I LS vdu+tick
610 SW! "OS_NewLine"
620
630 SW I GE vdu+tick
640 SW! "OS NewLine"
650
660 SWILT vdu+tick
670 SW! "OS NewLine"
680
690 SWIGT vdu+tick
700 SWI "OS NewLine"
710
720 SW ILE vdu+tick
730 SW! "OS NewLine"
740
750 MOV PC,Rl4
760 l
770
780 MODE 3
790 PRINT
800 REM Read in names of conditions and print them
810 FOR condition = 0 TO 15
820 READ name$
830 PRINT name$
840 NEXT
850
860 REM Keep getting two numbers and calling compare to show
870 REM the result of the comparison
880

AAL--0 97

Archimedes Assembly Language

890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
llOO
lllO
ll20
ll30
ll40

98

VDU 28,34,23,79,0
REPEAT
INPUT TAB(0,18) "Enter first number : "A%
INPUT TAB(0,19) "Enter second number : " B%
CLS
PRINT "Comparing '";A%;"' with '";B%;"'"
CALL compare
UNTIL FALSE

REM Names of all 16 conditions
DATA "Equal
DATA "Not Equal
DATA "Overflow Set
DATA "Overflow Clear
DATA "Plus
DATA "Minus
DATA "Carry Set
DATA "Carry Clear
DATA "Always
DATA "Never
DATA "Higher
DATA "Lower OR Same
DATA "Greater OR Equal
DATA "Less Than
DATA "Greater Than
DATA "Less OR Equal

-Unsigned-
-Unsigned-

-Signed-
-Signed-
-Signed-
-Signed-

(EQ)
(NE)
(VS)
(VC)
(PL)
(MI)
(CS)
(CC)'
(AL)"
(NV)"
(HI)"
(LS)"
(GE)"
(LT)"
(GT)"
(LE)"

·\

Processing Instructions

• CMN: Compare negative

Syntax:

CMN {<suffix>} <operandl>, <operand2>

Operation: Reflect result of operand one - (-operand two)

Flags: N, Z, C, V

CMN performs an exactly equivalent operation to CMP, except that it com
pares operand one with the negative of operand two.

The idea behind this is the same as that of the MVN instruction. It allows
comparisons to be made with small negative immediate constants which
could not be represented otherwise.

An important point to be wary of is that in MVN the logical NOT of operand
two is taken. In CMN it is the negative of operand two which is used. Thus,
to compare register RO with minus three we would write:

CMN RO,f3

The ARM will automatically form the negative of operand two and then
make the comparison.

Since the purpose of the CMN instruction is to affect the status flags, the S
suffix does not have to be used. The instruction will modify the status flags
whether S is present or not.

Examples:

CMN R5,R7
CMN R6,U
CMN R3,RO,LSLfl

Compare RS with -R7
Compare R6 with minus one
Compare R3 with -R0*2

99

Archimedes Assembly Language

AND: Logical AND

Syntax:

AND {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand one AND operand two

Flags: N, Z, (C)

This instruction performs a logical bitwise AND operation between its two
operands. The result of the operation is placed in the destination register.
The S suffix can be used with the instruction in the normal way so that the
results of the AND are allowed to affect the status flags.

Example:

AND R0,Rl,R2
AND R5,R5,i%1111

ANDS R4, R4 ' · il

RO = Rl AND R2
RS = R5 AND %1111
.(clear all but low four bits)
R4 = R4 AND 1
(setting flags on result)

The AND operation and its uses are covered fu Appendix C.

100

•

Processing Instructions

~

• ORR: Logical OR

Syntax:

ORR {<suffix>} <destination>, <operand!>, <operand2>

Operation: destination = operand one OR operand two

Flags: N,Z, (C)

This instruction performs a logical bitwise OR operation between its two
operands. The result of the operation is placed in the destination register.

Note: The OR operation is particularly useful for forcing certain bits to be
set in a data word.

ORR RO,Rll,R2
ORR R7,R7,f%1100
ORRS R5,R5,f2

RO=Rll OR R2
R7=R7 OR %1100 (set bits 2 & 3)
R5=R5 OR t2 (setting flags on result)

The OR operation and its uses are covered in Appendix C.

Listing 8.4 illustrates a use of the ORR instruction. It reads a character from
the keyboard, forces bit five in its ASCII code to be set, and prints the

,.---,, modified character to the screen. This has the effect of forcing all
characters entered to be displayed in lower case on the screen.

Listing 8.4. Case conversion using the ORR instruction.

10 REM Using the ORR instruction to perform case conversion
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM convert 256
70 P%=convert
80 [
90 SWI "OS ReadC" ; SWI routine to read character into RO

100 ORR RO,RO,t%100000; Set bit 5 of the characters ASCII code
110 SWI "OS WriteC" Use SWI to output modified char from RO
120 B convert Branch back to beginning of the routine
130 I
140 PRINT
150 PRINT "Entered characters will be converted into lower case"
160 CALL convert : REM Call the routine

101

Archimedes Assembly Language

EOR: Logical Exclusive OR

Syntax:

EOR {<suffix>} <destination>, <operandl>, <operand2>

Operation: destination = operand one EOR operand two

Flags: N,Z, (C)

This instruction performs a logical bitwise EOR operation between its two
operands. The result of the operation is placed in the destination register.

Examples:

EOR R7,R5,R2
EOR R7,R7,fl
EORS R3, RS, 112

R7 = RS EOR R2
R7 = R7 EOR 1 (invert bit zero in R7)
R3 = RS EOR f12 (set flags on result)

The EOR operation and its uses are covered in Appendix C. EOR is very use
ful in 'toggling' data between two pre-defined values. Listing 8.5 shows
this in practice. It toggles the register RO between 65 and 90 by EORing its
contents with 27. The character whose ASCII code is in RO is printed each
time, printing alternate As and Zs on the screen.

Listing 8.5. Toggling data using the EOR instruction.

10
20
30
40
50
60
70
so
90

. 100
110
120
130
140
150

102

REM Use EOR instruction to toggle between two characters
REM (c) Michael Ginns 19SS
REM Dabs Press : Archimedes Assembly Language
REM

DIM toggle 256
P%=toggle
[

MOV RO, fASC ("A")
.loop
EOR R0,RO,f27
SWI "OS WriteC"
B loop -
l
CALL toggle

Mark beginning of loop with a label
EOR the ASCII code in RO with 27
Output char whose ASCII code is in RO
Branch back to beginning of loop

REM Call the routine

Processing Instructions

BIC: Bit Clear

Syntax:

BIC {<suffix>} <destination>, <operandl>, <operand2>

~ Operation: destination= operand one AND (NOT (operand two))

N,Z,(C)

-

--

Flags:

The BIC instruction provides a useful way of clearing (forcing to zero) cer
tain bits within a data word, while leaving the others unchanged. Operand
one in the instruction is the data word to be modified.

Operand two is a 32-bit word called the bit mask. A set bit (one) in the bit
mask will force the corresponding bit in the data word to be reset when the
instruction is executed. A zero bit in the bit mask will leave the correspond
ing bit in the data word in its original state. The modified data word is
placed in the destination register.

Example of BIC operation:

Original:
Bit mask:
Result:

Examples:

%10101000111001010011001110111011
%10000000000000000000000000000111
%00101000111001010011001110111000

Clear low four bits of RO BIC RO,R0,#%1111
BIC Rl,Rl,R2
BIC R6, R6, R6

Clear bits in Rl which were set in R2
Clear bits which were set in R6(R6=0)

103

Archimedes Assembly Language

TST: Test Bits

Syntax:

TST {<suffix>} <operandl>, <operand2>

Operation: Reflect result of operand one AND operand two

N,Z,(C) Flags:

The TST instruction, like CMP, has no destination field to it. It performs the
logical bitwise ANDing of operands one and two, but does not store the re
sult anywhere. The status flags are set, however, to show the result of the
operation and this can then be acted upon. I"""'\

TST can be used to see if a particular bit in a data word is set or clear. The
data word forms one operand. A bit mask, in which the appropriate bit is """.
set, forms the other operand. After the TST operation the Z flag will be set if
the bit is set in the data word, but clear if it is ~ot.

As the purpose of the TST instruction is to always affect the status flags, the
S suffix does not have to be used. The instruction will modify the status
flags whether Sis present or not.

Examples:

TST Rl,01000
TST R3,R4

Test to see if bit three is set in Rl
Test if any bits set in both R3 and R4

An obvious application for TST is to print a number in binary. This is
implemented in listing 8.6. The program tests each bit in register Rl in tum
starting at bit 31. If the bit is set then a one is printed, otherwise a zero is
printed instead.

Listing 8.6. Printing binary.

104

10 REM Printing Binary using the bit test (TST) i nstructi on
20 REM {c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 REM declare registers names for those used
70 number 0
80 mask = 1
90

4

r
100
110
120
130
140
150
160

into
170
180
190
200

~ 210
mask

220
230
240
250
260
270
280
290
300

DIM Binary 256
P%=<Binary
[

Processing Instructions

; The number to be printed in binary is passed
; from A% into RO when the routine is called

MOV mask, fl << 31 ; Move %10000000000000000000000000000000
mask
.bits ;Start of loop to print binary digits
TST number,mask ; See if current bit is set in the number
SWIEQ 256+ASC"0" ; IF not set then VDU 48 ie. print a '0'
SWINE 256+ASC"l" ; IF set then VDU 49 ie. print a '1'
MOVS mask,mask,LSRfl ; Move •current bit' right 1 place in

BNE bits
SWI "OS NewLine"
MOV PC,Rl4
1

REPEAT
INPUT A%
CALL Binary
UNTIL FALSE

If all bits not looked at branch back
Output new line using SWI call
Return back to BASIC

105

Archimedes Assembly Language

TEQ: Test Equivalence

Syntax:

TEQ {<suffix>} <operandl>, <operand2>

Operation: Reflect result of operand one EOR operand two

Flags: N, Z, (C)

TEQ is very similar to TST. The only difference is that it performs a notional
EOR operation between its operands, instead of an AND. The TEQ instruc
tion can be used to see if the bits in two data words are the same or not.
This would normally be done using CMP. However, with TEQ the carry flag
is unaffected. This can be useful if the equality of two operands has to be
tested while preserving the setting of the carry flag.

Since the purpose of the TEQ instruction is to affect the status flags, the S
suffix does not have to be used. The instruction will modify the status flags
whether S is present or not.

Examples:

106

TEQ Rl,#5
TEQ R3,R4

Test to see if Rl contains five
Test to see if R3 and R4 are the same

Processing Instructions

MUL: Multiplication

Syntax:

MUL {<suffix>} <destination>, <operandl>, <operand2>

Operation:

Flags:

destination = operand one • operand two

N,Z
v
c

reflect result
is not changed by the instruction
is undefined after this operation

This instruction performs 32-bit multiplication. Operand one and operand
two are multiplied together and the result stored in the destination re
gister. If the two operands are interpreted as being signed two's compli
ment numbers, then the result may also be treated as being signedo.

MUL is different to the previous data processing instructions in that certain
restrictions exist about how its operands may be specified. The destination,
operand one and operand two must all be given as simple registers. No im-

\ mediate or shifted operands may be given as operand two. Also, there is
the restriction that the destination and operand one must be different re
gisters. Finally, register RlS may not be used as the destination register.

Example:

MUL RO,Rl,R3 RO = Rl * R3

Listing 8.7 shows the MUL instruction working. Two numbers are entered
and passed to a machine code routine which multiplies them. The result is
then passed back for BASIC to print.

Listing 8.7. Multiplying two numbers together.

10 REM Multiplying two 32-bit numbers using MUL
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50 DIM multiply 256
60 P% = multiply
70 [
BO The two number to be multiplied are passed into registers
90 RO and Rl, from A% and B% when the routine is called.

100 The result is passed back to BASIC from register RO
110 by the USR statement

107

Archimedes Assembly Language

120
130
140
150
160
170
180
190
200
210

108

MUL
MOV
MOV
l
REPEAT
PRINT
INPUT
INPUT
PRINT
UNTIL

R2,R0,Rl ; Multiply the numbers in RO and Rl together
RO,R2 Move result from R2 into RO return with USR
R15,R14 Retu~n to BASIC

"Number 1 : " A\
"Number 2 : " B\
"Result of multiplication is
FALSE

"; USR(multiply)

Processing Instructions

MLA: Multiplication with Accumulate

~ Syntax:

MLA {<suffix>}<destination>,<operand l>,<operand 2>,<sum>

Operation: destination = (operand one ,. operand two) + sum

Flags: N,Z
v
c

reflect result
is not changed by the instruction
is undefined after this operation

This instruction performs a similar operation to the MUL instruction. The
-... difference is that the contents of the register given in the sum field are

added into the result of the multiplication before storing it in the
destination register. Like MUL, all data fields of the instruction can only bes

F'. simple registers, and must observe the same restrictions.

The MLA instruction is used to keeping a running total of a series of
multiplications. If the sum register is specified as being the same as the
destination, then the result of each multiplication will be accumulated in
the destination register.

Example:

MLA RO, Rl,R2, R3
MLA RO,Rl,R2,RO

RO = (Rl * R2) + R3
RO = (Rl * R2) + RO

109

9 . Register RlS

Register R15 with Data Processing Instructions

In the previous descrir,tion of data processing instructions, we have
generally indicated that if a register can be used with an instruction, then it
may be any one the processor registers RO to R15. This is perfectly true.
However, if register R15 is used, then we would expect some special
results to occur since this is also the program counter and status flag
register. The effects of using R15 in instructions depends on whether it is
being used as operand one, operand two or the destination register.

Register R15 as Operand One

When register R15 is used as source operand one, only the program
counter part of it is accessible. Thus, the data used by the instruction as
operand one, are bits two to 25 of R15. All of the other bits are assumed to
be zero. This is done so that the value of the program counter can be used
in operations without the settings of the status flags having any effect.
For example, if we wanted to add 1024 to the program counter, and store
the result in register RO, we could write:

ADD RO,R15,f1024

Register R15 as Operand Two

If R15 is used as operand two in an instruction, then all 32 bits are access
ible. The value used in the instruction will therefore be made up from the
program counter in bits two to 25, the flags in bits zero to one and bits 26 to
31. This is useful if we want to access the state of any of the ARMS
processor flags.

The program fragment in figure 9.1, for example, accesses the processor
mode flags in the lower two bits of R15. The values of all the other bits are

110

,,

Register RlS

masked out. The value in R3 can then be used to determine which mode the
processor is executing in.

MOV R3, #%11 Put bit mask into register R3
AND R3,R3,R15 AND Rl5 with bit mask to get bits

zero and one
CMP R3, #%00 Is it user mode?
BEQ user mode
CMP R3,lf%01 Is it FIRQ mode?
BEQ FIRQ mode
CMP R3, f{lO Is it IRQ mode?
BEQ IRQ mode
CMP R3, #%11 Is it supervisor mode?
BEQ SVC mode

Figure 9.1. Testing the mode flags.

The Program Counter and Pipelining

Previously, we have said that the value of the program counter can be ac
cessed by specifying RlS as a source operand in an instruction. We would
expect that the value of the program counter used would be the address of
the instruction, as this is the one currently being executed. However, typing
in and running listing 9.1, will show that this is not the case.

Listing 9.1. The effect of pipelining on the program counter.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

REM A demonstration of the effects of pipelining
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM test 256
P%=test
[
; The value of the program counter when the MOV instruction
; is executed is passed back to BASIC using USR

.inst address
MOV RO,R15
MOV R15,R14
l

Label the address of the instruction
Move the current value of PC into RO
Return back to BASIC

170 PRINT
180 PRINT "Addr of the 'MOV RO,R15' instruction="; -inst address
190 PRINT "Addr of PC when instruction executed= "; -USR(test)

AND &3FFFFFF

111

Archimedes Assembly Language

The program simply stores the contents of the program counter in register
RO for BASIC to print out. This allows the address of the MOV instruction to
be compared with the contents of the program counter when the
instruction is executed. Note that the value of the PC is eight bytes greater
than the address of the MOV instruction.

The reason for this is that the ARM uses pipelining when processing \
instructions. Pipelining was fully explained in Chapter Two. It means that
at the time an instruction is executed by the ARM, a second one is being
decoded and a third is being fetched. When an instruction is executed, the
program counter is already pointing two instructions further on. The
address it contains is, therefore, two words (eight bytes) more than the
address of the executing instruction.

The effect of pipelining must be taken into account, otherwise some pecu
liar things can happen! An example of this is illustrated in the listing 9.2. At
first sight, it seems that the MOV instruction will have no effect, and all the
program does is produce a 'beep'. However, it doesn't even do that!

MOV causes the next instruction to be skipped. This is because the address
accessed from the PC is eight bytes more than the address of the MOV in
struction. When written back into the PC, therefore, execution resumes
eight bytes further on, thereby skipping the next instruction.

Listing 9.2. Skipping instructions.

10 REM Skipping instructions due to pipelining
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50 REM Declare constants
60 vdu = 256
70 beep = 7
80 DIM test 256
90 P% = test

100 [
110 MOV R15,R15 ; Move contents of R15 into R15
120 SWI vdu + beep; Make a 'Beep' (VDU 7)
130 MOV R15,R14 Return to BASIC
140 l
150 REM Calling the routine should make a 'beep'
160 REM But it won't bacause pipelining has caused
170 REM the instruction to be skipped
180 CALL test

112

Register R15

Always remember that when the PC is accessed, the address it contains is
always eight bytes more than the address of the instruction currently being
executed by the processor.

Register 15 as the Destination Register

When RlS is named as being the destination register in an instruction, only
the program counter normally is affected by the new data. Bits 26 to 31 of
the data written into RlS are not allowed to modify the status bits.

If we want to change the settings of the status flags, we must add the usual
S suffix on to the instruction. We are then free to set or clear any flag we
want. Bits 26 to 31 of the data being written into RlS, define the new states
of the flags. Obviously, we can only modify flags which are accessible from
the current processor mode. We could not, for example, change the inter
rupt flags from user mode.

If we need to change the settings of the status flags without altering the
program counter, things are more complex. We could try to use an instruc
tion like:

EORS R15,R15,#1 <<31

This should invert the status register's negative flag, held in bit 31 of RlS,
without changing anything else. However, as we have just seen, pipelining
will cause the following two instructions to be skipped. The value of the
program counter, read from RlS, will be eight bytes (two words) greater
than the address of the instruction. When it is written back into RIS, there
fore, causing the ARM to execute the instruction two words further on.

To allow for this, the assembler provides us with the P suffix. For our pur
poses, we use this suffix with the TEQ instruction. You will remember that
this instruction performs a notional Exclusive OR with its operands. The
operation is notional because the value produced is not stored anywhere.
Instead, the result of the operation is reflected in the status flags.

When the P suffix is used, however, bits 26 to 31 of the EOR result are writ
ten directly to bits 26 to 31 of RlS. The status flags are therefore changed
while leaving the program counter unaffected. We can now write state
ments of the form:

TEQP RlS,mask

AAL-H 113

Archimedes Assembly Language

Since RlS is given as operand one, bits 26 to 31 of it (the status flags) are
seen as zeros. However, anything EORed with zero is left unchanged. Thus,
when the notional EOR operation is performed by TEQ, bits 26 to 31 of the re
sult will be a direct copy of the corresponding bits in operand two, the
mask. Finally, because we have used the P suffix, bits 26 to 31 of this result
will be written to bits 26 to 31 of RlS, the status flags. The effect of all this
forces the status flag to take on the settings of bits 26 to 31 in the mask,
while leaving the program counter unchanged.

By choosing appropriate masks, we can set or clear any accessible status
flag. An example should make this clear. We want to set the negative flag.
The first thing we do, is place a copy of RlS in another register and set bit
31 (the negative flag) in it:

ORR RO,RlS,#1<<31

Next, we write the modified copy of bits 26 to 31 back into RlS using the
TEQP instruction:

TEQP RlS,RO

This will set bit 31 of RlS (the negative flag) while leaving the other flags
and the program counter unchanged.

114

,, 10 · Data Transfer

Between Memory and Registers

All of the data processing instructions discussed previously, accessed their
operands from the processor's internal registers. Obviously, we must also
have access to some method of transferring data between the registers and
main memory.

The two instructions load register (LDR) and store register (STR) are provi
ded by the ARM for this purpose. LDR transfers data from memory into one
of the processor registers. STR performs the reverse operation, transfer
ring data from a processor register to memory.

Accessing Memory

Instructions which transfer data between processor and memory must
have two things specified within them. First, we must specify the register
which is to be used as the source or destination of the data. This can be
done simply by quoting the register's name. This is equivalent to the way
that we gave the destination register in data processing instructions.

The second thing which we need to do, is to give the address of the memory
location which is to be used in the transfer. This could be done in a number
of ways. The method by which the ARM obtains the address is called the
addressing mode.

Addressing Modes

This simplest scheme for specifying the address would be to give the
location as an absolute address number. To be able to specify the full range
of ARM addresses, we would need a 26-bit field in the instruction. After
allocating bits for the instruction opcode, the condition flags, the register
number and so on, this size of field is simply not available.

115

Archimedes Assembly Language

Indirect Addressing

An alternative scheme is to specify the source location address indirectly. In
the instruction we give the name of a processor register called the address
ing register. When the instruction is executed, the processor will look at the
contents of the addressing register. The number contained in this is then
taken as the address of the location in memory to be accessed.

For example, suppose we have an LDR instruction and quote register R3 as
being the address register. If, when the instruction is executed, R3 con
tained the number 1000, then the data would be loaded from location 1000
of memory. This scheme is summarised in figure 10.l.

Registers

Rl

R1

t.m-t.. R2 Location 1 coo
Rl

R4

R14

R15

~
'

Figure 10. l. Summary of the indirect addressing scheme. \

Indirectly addressing memory also has another advantage. The address of
the location accessed is not fixed in the instruction. It is defined by the con- ,,--.....,
tents of a register and can be changed dynamically as the program exec-
utes. This provides a very flexible memory access system, which can be
used to support high-level data structures such as arrays, tables, lists and
soon.

116

'"'

Data Transfer

The ARM supports two forms of enhanced indirect addressing called pre
indexed and post-indexed addressing. We will now look at these using the
LOR instruction as the example. All comments about the two addressing
modes equally apply to the STR instruction. The way in which addressing
mode calculations are made is the same for both LOR and STR, the only dif
ference is the 'direction' in which data is transferred. That is, from memory
to registers, or from registers to the memory. Remember that conditional
suffixes can be used with both LOR and STR, although these have been left
out for clarity in the following descriptions.

Pre-indexed Addressing

r-'\ An LOR instruction using pre-indexed addressing has the following syntax
in assembler:

LDR <destination>, [<base>{,<offset>}]

The destination field is the register into which the data is to be transferred.

1
, The contents of the base and offset fields together specify the memory

word to be accessed by the instruction.

If the optional offset field is not present, then the contents of the base re
gister alone are taken to be the memory address. If the offset is given, how
ever, then the contents of it are added to the contents of the base field. The
resulting number is then taken to be the required address.

Base is always given as a simple register. It is intended to contain the start
or base address of the section of memory which is going to be accessed.
Offset is more flexible and is intended to contain an offset from the address
stored in base to the address of the required location.

Offset is specified in a similar way to that used in operand two of the data
/'\ processing instructions. For example:

A simple register
An immediate constant
A shifted register

117

Archimedes Assembly Language

Simple Register

In this form, the address of the memory location accessed by the instruction
is made by adding the contents of the base and offset registers. An example
is as follows:

LDR RO, [Rl,R2] Load RO from the address Rl+R2

This would add the contents of registers RI and R2. The result would be
taken by the ARM to be an address in memory. The data word at this loca
tion would then be loaded into register RO as illustrated in figure 10.2.

LDRR1JRO],R~
Rl

R14

R15

l.cca1ion10C6

Figure 10.2. Pre-indexed addressing using a register offset.

Note that a minus sign(-) may be included before the offset register name.
This instructs the ARM to treat the offset in the register as being negative,
ie, it will subtract it from the base address.

Listing 10.1 shows this pre-indexed addressing in use. The program re
peatedly stores pseudo-random data words into screen memory. The top
of screen memory is always at address &2000000, so this becomes the con
tents of our base register. The offset register starts at one and is incremen
ted in a loop up to a value of &14000 (80k). The minus sign in front of the
offset register specifies that the offset is to be subtracted from the base. We

118

Data Transfer

thus repeatedly store the data words in the 80k of screen memory beneath
the base address. Incidentally, the program also shows how fast the ARM
is. Remember that over 80000 bytes of memory are being written to several
times a second.

Listing 10.1. Demonstration of pre-indexed indirect addressing.

10 REM Storing random words in the screen memory using
20 REM the ARM'S STR instruction with pre-indexed addressing
30 REM (c) Michael Ginns 1988
40 REM Dabs Press : Archimedes Assembly Language
50 REM
60
70 MODE 15
80 REM Give names to the registers used
90 base 0

100 offset 1
110 data 2
120
130 DIM screen 512
140 P%=screen
150 [
160 ; The end of screen memory is placed into register Rl
170 ; Random data words are then stored in the 80k of memory
180 ; below this address
190
200 .store screen ; Label loop - keep filling scrn memory
210 MOV base,t&2000000; Move end screen memory addr into base
220 MOV offset,tl ; Set offset of store instruction to 1
230 .store words ; Loop - store data in each word of 80k
240 ADD data,data,data,RORil ; Get new pseudo-random word
250 STR data, [base,-offset] ; Store word at 'base+(-offset)'
260 ADD offset,offset,t4 ; Inc offset by 1 word (4 bytes)
270 CMP offset,i&14000; See if 80k of memory has been filled
280 BCC store words ; If not then branch back
290 B store screen ; Do all again by branching to the start
300 l
310
320 C%=1
330 CALL screen

An Immediate Constant

This format allows the offset to the address held in base to be given as an
immediate constant. The constant, unlike those used in the data processing
instructions, must be in the range -4069 to 4069. An example is:

LDR RO, [Rl,i-4) Load RO from the address Rl-4

119

Archimedes Assembly Language

This would load data into register RO from an address which is four bytes
(one word) lower than that contained in register Rl.

Shifted Register

The offset can also be given as the contents of a register to which a shift ~
operation has been applied. The shift operations are the same as those
used in the data processing instructions. An added restriction, however, is
that the number of places to shift by must be specified as an immediate con-
stant. With data processing instructions we were allowed to specify this as ~
the contents of yet another register, however, this is no longer possible.

This form of the instruction is of particular use when accessing data from
an array, or table, using an index. Suppose that each entry of the table or
array occupied four bytes of memory. To access the nth entry, we could use
the following instruction:

LDR RO, [base,index,LSL#2)

Where base and index are two registers containing the base table address
and the index of the required entry within it. The instruction will take the
value of index, multiply it by four (using the shift operation), add it to the
contents of base and then use the result as the address from which a data
word is to be loaded in to RO . .

Listing 10.2 illustrates this application. A table of cosine and sine values are
created in BASIC. A machine code routine then accesses entries in these
tables to draw a circle on the screen.

Listing 10.2. Accessing tables using indirect addressing.

10 REM Drawing circles using indexed addressing to access
20 REM a table of SIN and COS values
30 REM (c) Michael Ginns 1988
40 REM Dabs Press : Archimedes Assembly Language
50 REM
60
70 REM Create COS and SIN tables
80 REM COS and SIN values for angles 0-360 are calculated
90 REM the value stored is multiplied by 400 and has 600

100 REM added to it. This ensures correct ranges for the screen.
110 REM Note each value in the table takes two bytes
120 ~
130 DIM cosine 720
140 DIM sine 720

120

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

FOR angle = 1 TO 360
cosine! (angle*2)=(COS(RAD(angle))*400)+600
sine! (angle*2)=(SIN(RAD(angle))*400)+600
NEXT

DIM circle 512

REM Set up names for all the registers used

Data Transfer

index = 2 REM Register to index the TRIG tables
cos base = 3 : REM base address of the cosine table
sin -base = 4 : .REM base address of the sine table

constants REM Define
plot = 25
dot =69
vdu = 256

REM' Plot is performed by VDU 25
REM dots are drawn by PLOT command 69

: REM Start of SWI block to perform VDU n

P%=circle
[

ADR cos base,cosine; Get start addr of COS table in base reg
ADR sin-base,sine Get start addr of SIN table in base reg
MOV index,#360 Index pointer=360 and decrements
.draw loop to draw points in circle
SWI vdu+plot VDU 25 ie, PLOT
SWI vdu+dot ; VDU 69 ie, code to PLOT a dot
LDR RO, [sin base,index,LSL#l] ; Access SIN table(index)
SWI "OS WriteC'' ; Send high and low bytes to VDU driver
MOV RO,RO,LSR#8 ; to specify the x co-ord for the plot
SWI "OS WriteC" .
LDR RO,[cos base,index,LSL#l] ; Access COS table(index)
SWI "OS WriteC" Send high and low bytes to VDU driver
MOV RO,RO,LSR#8 to specify the y co-ord for the plot
SWI "OS WriteC"
SUBS index,index,#1
BNE draw
MOV PC,Rl4
l

MODE 0

; Decrement the index
If index not at '0' then repeat loop
Return back to BASIC

PRINT" PLOTTING CIRCLE !"
CALL circle

Using Write Back

In calculating which word of memory is to be accessed, the ARM adds to
gether the contents of the base and offset registers. It is sometimes useful
to retain this newly calculated address for future use. In pre-indexed
addressing this is done by using the ARM's 'write back' facility.

121

Archimedes Assembly Language ·

Write back is an extension to the data transfer instruction. We specify that
we want write back to occur by including a '!' suffix on the instruction. An
example is illustrated below:

LDR <destination>, [<base>{,<offset>}J !

Examples:

LDR RO, [Rl,R2] ! Load RO from addr Rl+R2: Rl=Rl+R2
LDR R3, [RS,tlOJ ! Load R3 from addr RS+lO: RS=R5+10
LDR R7, [R3,R8,LSLt2J ! Load R7 from addr R3+R8*4:R3=R3+R8*4

When the ARM executes the instruction, it will perform the usual addition
of the base and offset fields. It will then access the data at the resulting
address. Finally, as write back is selected, it will store the newly-calculated ,,-..._,,
address back into the base register. Write back is available with both the
LDR and STR instructions.

Write back is particularly useful when accessing a sequence of memory
locations. For example, to access consecutive memory words, we can use
the following:

LDR RO, [base, t4] !

When executed for the first time, this will access location base+4. This
calculated address will then be written back automatically into the base
register. The next time the instruction is executed, therefore, the location
accessed will be at base+4+4 = base +8. Again, the base register will be
updated from this address. In this way addresses base+4, base+8, base+ 12
and so on can be accessed by simply looping back to the instruction.

This could be useful, for example, when summing the contents of an array.
A program to do this is presented when we consider implementing arrays
in machine code.

Post-indexed Addressing

Post-indexed addressing is the other way in which the ARM can access
memory. In assembler it has the following form:

LDR <destination>, [<base>J,<offset>

122

Data Transfer

The three fields can be given in exactly the same forms as used with pre
. indexed addressing. Note, however, that the offset field isn't optional and

must be included.

Examples of LOR instructions using post-indexed addressing are:

LDR Rl, [R0] ,R7
LDR R6, [R7],#4
LDR RB, [R2],R5,LSL#4
LDR RO, [R0],#20

Load Rl from addr RO: RO=RO+R7
Load R6 from addr R7: R7=R7+4
Load RB from addr R2: R2=R2+R5*16
Load RO from addr RO: RO=R0+20

When post-indexed addressing is used, the contents of the base register
alone are taken as the address of the memory word to be accessed. Only af
ter this word has been accessed, are the contents of the offset field added to
the base register and the result stored back in the base register. Obviously,
this implies that write back always occurs, so we do not need to specify it.

In the first of the examples, the contents of register RO would be taken as
being the address to be accessed. The word of memory at this address
would then be transferred into register RI. Finally, the contents of R7 will
be added to RO and the result written back to RO. This example is illustrated
in figure 10.3.

LDRR1,[RO],R J;

R14

R15

Location 1024

Figure 10.3. Post-indexed addressing using a register offset.

123

Archimedes Assembly Language

PC Relative Addressing

We have said that the ARM processor supports two distinct forms of ad- ~
dressing: post-indexed and pre-indexed. However, the BASIC assembler on
the Archimedes also allows another form, PC relative addressing.

This is really a pseudo-addressing mode as it is not a distinct addressing
mode supported by the ARM. Instead, instructions using PC relative ad
dressing are accepted by the assembler, but are converted into an appro
priate pre-indexed instruction.

The general form of instructions using PC relative addressing is as follows:

LDR <destination>,address

The destination is the same as before, ie, a register into which the data is to
be transferred from memory. The address is simply an absolute number, or
assembler label (which is the address in memory from which the data is to
be accessed). For example, we could write:

LDR R0,&1000
LDR RO,table

The first example would load the word of memory from location &1000
into register RO. The second example would access the memory location
labelled in the program as 'table'. Again, the contents of this location
would be loaded into register RO.

When the assembler encounters a PC relative instruction, it will always
know the address at which it is being assembled. It can also look at the
address specified in the instruction itself, and calculate the difference be
tween the two addresses. This can be viewed as an offset from the address
of the instruction to the address of the memory word which it accesses.

The assembler can, therefore, assemble this as an instruction which uses
pre-indexed addressing. The base register in this instruction is the pro
gram counter, RlS. This will, ignoring pipelining, contain the instruction's
ad-dress when executed. The offset field contains the absolute offset num
ber previously calculated by the assembler, with a correction for pipelining.

When the ARM performs the pre-index calculation and adds together the
contents of the PC and the offset, the address of the data originally given in
the instruction, is obtained.

124

Data Transfer

An important point to remember is that the range of the offset in pre
indexed addressing is -4096 to 4096. When using PC relative addressing the
difference between the address of the instruction and that of the memory
location to be accessed, must be within this range. If this is not the case,
then the assembler will not be able to produce a legal pre-indexed equiva
lent to the instruction and an error will be given.

Byte and Word Addressing

In the previous sections, we have looked at the different ways in which the
ARM can access complete words of memory (four bytes). In some situa
tions, however, it is more convenient to access single bytes of memory. For
example, when manipulating character strings, each character will only
require a single byte to store it. In cases like this we need to use some form
of single byte access.

All of the previously described addressing modes can still be used when we
access single bytes. The syntax of each instruction is virtually the same. The
only difference is we tell the ARM that when it accesses data at a given
address, it is only to transfer a single byte rather than a complete word.

In assembler, we specify that we are accessing bytes instead of words by
using a B suffix to the instruction mnemonic. This is placed after any condi
tion codes which may be present. A few examples should make the syntax a
litle clearer:

LDRB RO, [R2,R4]
STRB RO, [RS, #4]
LDRB RO, [R6,R5,LSR#6] !
LDRNEB RO, [Rl],R3
LDRB RO,table

When we access complete words of data, the ARM requires the final
address to be word aligned. As we are now dealing with single bytes of
data, this requirement does not apply. The final address, derived after
performing any addressing mode calculations required, can be anywhere in
the memory map.

~ Multiple Register Transfers

In the previous section we saw how individual words and bytes of data can
be transferred between registers and memory. Often, however, we will
need to transfer data between several different registers and memory. It

125

Archimedes Assembly Language

would be extremely tedious and inefficient to repeatedly write LDR and STR
instructions for each of these transfers. For this reason, the ARM provides
us with two instructions which load and store the contents of several re
gisters at a time. These instructions are LDM and STM, the multiple load and
store instructions respectively.

S1M

The syntax of the STM instruction is:

STM <options> <base>{!}, <register_list>

The register_list is the series of register names, separated by commas, the
contents of which we want to store in memory. The order of the registers
in the list is of no significance and any number of registers can be given up
to the maximum of 16. The assembler will allow a range of registers to be
specified by using a '-' character. The following are all legal ways of
specifying the same list of registers:

R0,Rl,R2,R3,R9,Rl3
RO-R3,R9,R13
R9,RO-R3,R13

The base field in the instruction must be given as a simple register.

The contents of this are taken to be the start address in memory from which
the registers are to be saved.

The options field is a two-character code which defines how the instruction
should be executed. The options available will be described later.

As the ARM executes the instruction, it will store the contents of each of the
registers, named in 'register_list', in consecutive memory words. A copy of
the address in the base register is used and modified by the ARM as each
register is stored. The actual contents of the base are not changed, unless
we request this using the write back option.

After storing each register, the address being used will be modified so that
the next register is stored in the next consecutive location. We can specify
whether we want the address to be incremented or decremented after each
register store. Thus, we can define the direction in which registers are
stored in memory.

126

Data Transfer

Direction of Storage

The storage direction used by the instruction is controlled by the first char
acter in the option field. This may be either of the following:

I Increment address after storing each register
D Decrement address after storing each register

If an incrementing address is specified, then registers will be stored in loca
/"\ tions: 'base', 'base+ 4', 'base+ 8' and so on. If a decrementing address is

specified then registers will be stored in locations: 'base', 'base - 4', 'base -
8' and soon.

Pre or Post-address Modification

The second letter in the option field specifies whether the address is to be
modified before or after each register is stored. The following options can
be used:

A Modify address after storing each register
B Modify address before storing each register

If the address is modified after storing each register, then the first register
will be stored at the address in base, and the second at (base + 4) or (base -
4), depending on the increment/ decrement option.

If the address is modified before storing each register, then the first re
gister will be stored at the address in (base +4) or (base - 4), again depend
ing on the increment/ decrement option. The second register will be stored
at (base+ 8), or (base - 8), and so on.

Examples of instructions using all four option codes are given in figure
10.4 on the next page.

127

Archimedes Assembly Language

STMIA Base,{RO-R6}

R6

R5

R4

R3

R2

R1

Base> RO

STMDA Base,{RO-R6}

Base> RO

R1

R2

R3

R4

R5

R6

Base+ 24

Base+ 20

Base+ 16

Base+ 12

Base+ 8

Base +4

Base

Base

Base-4

Base-8

Base -12

Base -16

Base-20

Base-24

STMIB Base,{RO-R6}

R6

R5

R4

R3

R2

R1

RO

Base>

STM Base,{RO-R6}

Base>

RO

R1

R2

R3

R4

R5

R6

Base+ 28

Base+24

Base+ 20

Base+ 16

Base+ 12

Base+ 8

Base +4

Base

Base

Base -4

Base -8

Base -12

Base -16

Base- 20

Base-24

Base-28

Figure 10.4. Examples of LDM instructions using various option codes.

128

Data Transfer

Write Back

/'""\, We have said that as the ARM stores registers, it modifies the address being
used. This ensures that the next register processed is stored in a consecu
tive word of memory, and does not overwrite the previous one.

I'

If we specify that we want write back, then the final address, obtained
after storing all of the registers in the list, will be written back into the base
register.

Write back is selected, as before, by including a '!'character. Thus, the fol
lowing instructions all have write back selected:

STMIA
STMDA
LDMIB

RO! , { Rl, R2}
base!, {R4,R5-R9}
R6!, {Rl2,Rll,Rl0}

After each instruction, the ARM performs one of the following depending
on the direction of storage used:

base = base + 4*n (increment)

or alternatively:

base = base - 4*n (decrement)

Where 'n' is the number of registers stored by the instruction. Figure 10.5
shows the the effects of write back in some example cases. Write back is
provided so as to support the creation of stacks using the LDM/STM instruc
tions. This is covered in Chapter 12.

AAL-1

New Base>

Old Base>

R4

Rl

~

R1

Rl

Base+20

Base+ 16

Base+ 12

Base +8

Base+4

Base

STMJA Base!,[RO-R4}

Base updated to Base+20

Figure 10.5. The effects of using write back.

129

Archimedes Assembly Language

Applications of STM, LDM

Taken at its simplest level, STM can be used to preserve the contents of a re
gister group in an arbitrary block of memory. The original contents can
then be restored at a later time using LDM with the same memory address
and register list. For example, to preserve the contents of registers RI to
Rl4 we could use the following, assuming that register RO contains the
address of a free block of memory:

STMIA RO,(Rl-R14}

The register contents could then be restored by using the following instruc
tion, assuming that RO contains the address of the same block of memory:

LDMIA R0,(Rl-R14}

The programmer is left to decide which options are to be used with the in
structions. However, they must be used consistently in both instructions
otherwise the registers will be reloaded from the wrong address.

The major use of LDM and STM is in the support of data structures known as
stacks. The implementation and use of these is described in Chapter 12.

130

'\

r- 11 · Branches and SWI

In this chapter the final two ARM instructions will be described. These are
., the branch and software interrupt (SWI) instructions.

'\

-~

There are two variants of the branch instruction supported by the ARM:

Branch (B)
Branch with Link (BL)

Simple Branch (B)

This is the simplest form of the branch instruction and is analogous to the
BASIC GOTO statement. It is used to make the processor break off from its
normal sequential execution of instructions and jump to a new instruction
at a designated location. Ignoring the usual conditional suffixes, which can
be used with any instruction, the syntax of branch is:

B <address>

The address is the address of the instruction which the ARM must branch, or
jump, to. This may be done by specifying the absolute address to be
branched to, or an assembler label which will be evaluated to get the
branch address.

Although in the assembler we give the actual address to be branched to,
this is not what is encoded into the branch instruction.

Assembler calculates the difference, or offset, between the branch instruc
tion address and the location to be branched to. It is this offset which is en
coded into the instruction. When the ARM executes the branch, it treats the
offset as being relative to the current contents of the program counter, RlS.
The result of adding the offset to the program counter derives the original,
absolute address which is to be branched to.

This is done to aid making machine code programs relocatable. A relocat
able program is one which will operate correctly irrespective of its absolute

131

Archimedes Assembly Language

address in memory. If branches used absolute addresses, then each and
every one of them would have to be modified if the program is moved.

Using offsets to implement relative branching eliminates this problem. As
long as the target address to be branched to doesn't move relative to the
branch instruction, then the absolute position of the program in memory
does not matter. \

Conditional Branches

Many processors, including the 6502, have a complete set of distinct branch
instructions. Each of these instructions causes a branch to occur if a spec
ified condition is TRUE, eg, if the carry flag is set. These branches are used
to implement conditional sections in programs. By using an appropriate
branch instruction, pieces of code can be skipped over, or executed, dep
ending on the result of a previous operation.

The ARM only has one branch instruction. However, it allows any instruc
tion to execute conditionally upon any one of 16 conditions. We do not,
therefore, need separate instructions to implement conditional branching.
We simply use the fundamental B instruction, then add the appropriate suf
fix to make the branch conditional. For example, if we want a piece of code
to be branched to where a previous operation gave a negative result, we
write the following:

BMI routine

A major use of branch instructions is to create program loops. Using
branches, we can repeatedly execute a section of code, as long as a certain
condition is met. Listing 11.1 uses this technique to implement two nested
loops. The inner loop accesses and prints the first 'n' characters in a string.
The outer loop increases 'n' from 'O' until all of the string is outputted.

Listing 11.1. Branches and loops

132

10 REM An example of branches and loops
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 REM Set up string to be printed
70 DIM string buff 32
80 $string buff = "Acorn RISC Machine"
90 length ;;- 18

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

REM Define names for register used
index 1
base = 2
num chars = 3

DIM loops 512
P%=loops
[

Branches and SWI

ADR base, string buff
MOV num_chars,#T

Get addr of string in base register
First output 1 character in string

.outer loop Inc 'n' loop - no. chars to print
MOV index,#0 Initialise string index pointer
.inner loop Output first 'n' characters loop
LDRB RO, [base, index] Get character pointed to by index
SWI "OS WriteC'' Print character on the screen
ADD index,index,#1 Inc index to the next character
CMP index,num chars Have first 'n' chars been printed?
BLT inner loop If not, branch to start of printing
SWI "OS NewLine" ; Output a newline to the screen
ADD num chars,num chars,#1; Increment 'n'
CMP num-chars,#length ; Has 'n' reached full string length?
BLE outer loop ; If not branch and print again
MOV PC,Rl4; Return to BASIC
l

PRINT
PRINT "Demo of loops and branches"
PRINT
CALL loops

Chapter 23 contains details of how to implement various high-level
machine code looping constructs using the branch instruction.

Branches and Conditional Instructions

Readers who are familiar with programming the 6502 will know how often
branches are used to skip one or two instructions. For example, the follow
ing type of code frequently crops up:

SUBS RO,R0,#1
BPL not negative
MOV R0, #10

.not negative
l -

133

Archimedes Assembly Language

This decreases the value of register RO by one, and reloads it with the num
ber 10 should it becomes negative. A branch instruction skips the re-load in
struction if it isn't needed. While there is nothing wrong with this code, the
ARM processor offers facilities to write it more efficiently:

SUBS RO I RO I #1
MOVMI RO I #10

In this version, the ARM's generalised conditional execution facility is used
to completely remove the need for the branch. This type of instruction ~
crops up a great deal. Thus, branches in ARM programs are not used quite
as often as they are with other processors.

Branch with Link: BL

The second form of the branch instruction is Branch with Link (BL). The
ARM provides this as a primitive to implement subroutine mechanisms in
machine code.

The instruction has the same format as the simple branch instruction:

BL <address>

However, BL copies the contents of register Rl5 into Rl4 immediately
before the ARM branches to the new address.

This preserves a copy of the program counter and status flags in register
Rl4. When copying the program counter, the effects of pipelining are auto
matically corrected. The address stored in bits two to 26 of Rl4, therefore,
is really the instruction immediately following the branch instruction.

By using the address in Rl4, we can effectively return to the original sec
tion of code immediately after the branch. This is achieved by moving the
contents of Rl4 back into Rl5. Execution will then resume from the state
ment following the branch instruction.

The analogies between the BL instruction and subroutines in BASIC are
clear. It allows us to call self-contained sections of code from anywhere in
a program, and return to the original position after the subroutine has
been executed.

134

Branches and SWI

R14 is called the link register because it contains the address at which we
can re-link back into the program which called the subroutine.

The general outline of how a subroutine is implemented using BL is outlined
in figure 11.1.

.rnain_program

BL subroutine

.end_program

.subroutine

<body of subroutine>

MOV Rl5,R14

Figure 11.1. Subroutine outline using the BL instruction.

A specific example should make this clear. Listing 11.2 contains a small sub
routine which implements the BASIC command PLOT k,x,y. The k,x,y
parameters are passed to the subroutine in registers RO, RI and R2
respectively. The main program simply calls the subroutine a few times to
draw a triangle and circle.

Listing 11.2. Sub-routines using Branch with Link.

10 REM A general PLOT subroutine using the BL instruction
20 REM (c) Michael Ginns 1988
30 REM Dabs Press Archimedes Assembly Language
40 REM
50
60 REM Program uses 2 pass assembly. This is described in
70 REM Chapter 13 of the book
80
90 REM Define constants for the program

100 vdu = 256 REM Start of SW! block to perform VDU n
110 plot = 25 REM PLOT is implemented as VDU 25
120 move = 4 REM Move is PLOT command 4
130 triangle = 85 REM Triangle is plot code 85
140 circle = 157 REM Circle is plot code 157
150
160 REM Define names for the registers used in the program

135

Archimedes Assembly Language

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

136

k 0
x = 1
y 2

DIM shapes 512

REM
REM
REM

Passes PLOT option code 'k'
Passes PLOT x co-ordinate
Passes PLOT y co-ordinate

REM TWO pass Assembly
FOR pass = 0 TO 3 STEP 3
P%=shapes

[
OPT pass

MOV Rl0,Rl4

MOV k,#move
MOV x,#640
MOV y,#512
BL plot_it

MOV k,#circle
MOV x,#640
MOV y,#256
BL plot_it

MOV k,#move
MOV x,#420
MOV y,#64 0
BL plot_it

MOV k,#triangle
MOV x,#860
MOV y,#640
BL plot_it

MOV PC,RlO

Select assembly option

Preserve Rl4 contains BASIC return address

Set regs k,x,y for calling PLOT subroutine
Using the subroutine to perform
MOVE 640,512
Call the subroutine

Set up registers k,x,y again
This time for PLOT 157,640,256

Call the subroutine

Set up registers k,x,y again
This time for MOVE 420,640

Call the subroutine

; Set up registers k,x,y again
This time for PLOT 85,860,640

Call the subroutine

Return to BASIC - Addr moved to RlO

.plot it Start of PLOT subroutine
SWI vdu+plot ; Issue VDU 25 ie. PLOT
SWI "OS WriteC'' ; Output the PLOT option code 'k'
MOV RO,x Move x co-ord of the point into RO
SWI "OS WriteC" ; Output low byte x co-ord to VDU driver
MOV RO,x,LSR#8; Get high byte of x co-ord in low byte of RO
SWI "OS WriteC" ; Output high byte x co-ord to VDU driver
MOV RO,y ; Move the y co-ordinate of the point into RO
SWI "OS WriteC'' ; Output low byte y co-ord to VDU driver
MOV RO,y,LSR#8; Get high byte of y co-ord in low byte of RO
SWI "OS WriteC'' ; Output high byte y co-ord to VDU driver
MOV PC,Rl4; Return from subroutine to main program

l
NEXT

700 MODE 0
710 GCOL 3, 1
720 CALL shapes

Branches and SWI

Note that a MOV instruction is used to move the return address from re
gister R14 back into the program counter. This will have no effect on the
status flags. The original settings of the flags, will not be restored. This is
useful for the subroutine to communicate some results to the calling rou-
tine by conditioning the flags.

You may, however, want the status flags to remain unaffected by the call
to the sub-routine. In this case the subroutine should return using the fol
lowing instruction:

MOVS Rl5,R14

This will restore the value of the program counter and the original settings
of the status flags.

Preserving the Link Register

It is important to remember that every time a BL instruction is executed the
contents of RlS are copied into R14. This means that if we are already in a
subroutine, when a second one is called, the original re-link address of the
first subroutine will be over-written by the second one.

For this reason, we must save the contents of R14 when another sub
routine is called. We also do this if we want to return to BASIC from our
routine, as the BASIC return address is passed in register Rl4.

You can simply move R14 into another register to preserve it. This is
shown in listing 11.2. However, there is a problem. When the second sub
routine calls a third one, which calls a fourth and so on, we have to prese
rve R14 each time. If the depth of these sub-routine calls is too great, we qui<
kly run out of registers. Also, in dynamic problems which use recursive sub
routine calls, we don't know beforehand the depth of the

/"'\ A more general solution is to store R14 on a stack every time a procedure is
called. This is described in the next chapter.

/',
l

137

Archimedes Assembly Language

Software Interrupt: SWI

The swr instruction is one of the simplest, yet most important, of the ARM's ~
instruction set. swr stands for software interrupt. An swr instruction is used
when we want the operating system to perform some task on our behalf.
For example, controlling the mouse, creating screen windows, reading
keys, loading disc files, making sound effects and so on. The syntax of the
instruction is as follows:

SWI <argument> ~

When executed, this instruction causes the processor to break off from the
current program. The ARM then switches into supervisor mode and jumps
to a pre-defined address in the operating system. The argument field is
then examined to determine which of the many operating system facilities
has been requested. When the appropriate routine has been completed, the
ARM resumes the execution of the user program where it left off.

The argument field of the swr is a 26-bit quantity which defines the number
of the operating system routine required. We can, therefore, write state
ments like:

SWI 0

This will call operating system routine number zero, which writes a charac
ter to the screen. In practice, however, it is difficult to remember which
routine has which number. However, assembler allows us to specify the
name of the routine we want. It will then look up the corresponding num
ber in an internal table and construct an appropriate swr instruction. In
assembler, we can write statements like:

SWI "OS Mouse"

or like:

SWI "Wimp_CreateWindow"

The number of each of the named routines will be looked up and substituted
in the swr instruction. Note that when specifying the names of the rou
tines, the quotes are compulsory as we are really giving a string argument.
The name of the routine must exactly match up with that recognised by the
assembler including the case of each character. For example, if we write: ~

SWI "OS mouse"

138

1\

Branches and SWI

an error would be produced because we have not used a capital M. This is
a common mistake!

Most of the examples given previously have used swr calls in some way or
other. A complete list of the operating system routines accessed through
SWis is given in Appendix E. For detailed descriptions of many of the more
useful routines see Chapters 17 to 19.

139

12 · Stacks and LDM/STM

A stack is a widely used data structure. The standard stack analogy com
pares the stack to a pile of plates. When new plates are added to the pile
they are always placed on the top of existing plates. Similarly, when a
plate is removed, it is always the plate on top of the stack which is taken
off first.

The most important part of the analogy to remember is that the plate on
top of the stack is always the last one added. This is also the first one to be
removed. The stack is therefore called a 'last in, first out' structure (LIFO).
When an element is added, we say that it has been 'pushed' onto the stack.
When we remove an element, we say that it has been 'pulled' from the
stack. Figure 12.l illustrates these two operations. Note that a series of
items pulled from a stack are always obtained in the reverse order to when
they were pushed on to it.

140

Sixth Item

Third Item

Second Item

First Item

Sixth Item

Third Item

Second Item

First Item

Stacks before

0 PUSH 0
item

Seventh Item

Sixth Item

Third Item

Second Item

First Item

Fifth Items

¢ PULL 0 Third Item

item
Second Item

First Item

Stacks after

Item 7 placed
on the stack

Item 7 pulled
off the stack

Figure 12.1. Simple model of a stack.

Stacks and LDM/STM

Computer Stacks

Computer stacks are implemented using exactly the same principles as the
pile of plates. A series of contiguous memory locations are set aside to hold
the data in the stack. We also need some sort of pointer to record where the
top of the stack is. When 1 add an item to the stack, we store it in the me
mory word pointed to by e stack pointer. We then increment the pointer.
When we remove an item om the stack, we first decrement the stack poin
ter and then access the memory word which it points to. An example of this
is shown in figure 12.2. Entries in the stack are complete words of memory
(four bytes) and so the stack pointer is incremented and decremented in
units of four each time.

The disc which accompanies this book contains a program modelling the
operation of a stack. This allows us to view the stack structure as data is
pushed onto it and pulled off it.

STACK

Stack Pointer > &20001000

&00001000

&30000000

&02800000

&02000000

&01000000

DATA

STACK

Stack Pointer > &20001000

&00001000

&30000000

&02800000

&02000000

&01000000

DATA

location 20
location 16

location 12

location 8

location 4

location 0

location 20

location 16

location 12

location 8

location 4

location 0

Stack Pointer >

~
&00000003

Stack Pointer >

~

C>T.a,-,1<

&00000003

&20001000

&00001000

&30000000

&02800000

&02000000

&01000000

DATA

STACK

&00001000

&30000000

&02800000

&02000000

&01000000

DATA

location 24

location 20

location 16

location 12

location 8

location 4

location 0

location 16

location 12

location 8

location 4

location 0

Data removed - &20001000

Figure 12.2. A computer stack and stack pointer.

141

Archimedes Assembly Language

Types of Stack

The stack we just looked at was only one example of the way in which a
stack can be created. There are four possible stack structures. These are
made of combinations of two variants. The first of these variants deter
mines which direction the stack grows in.

We can create stacks that grow upwards in memory as extra items are
pushed on, and contract downwards as items are pulled off. This type is
called an ascending stack. Similarly, we could implement a stack which
grows downwards in memory as items are added, and contracts back up
again as they are pulled off. This is called a descending stack.

When you implement a stack, you must decide exactly what the stack
pointer should point to. It could point to the top entry on the stack, ie, the
one most recently pushed on the stack. Alternatively, it may point to the
next available space in the stack's memory area. This would be the address
at which a new item would be stored if it were pushed on the stack. In the
first case the stack is known as a 'full' type stack, in the second it is called
an 'empty' type stack. ,.........

1) Full, ascending stack

2) Full, descending stack

3) Empty, ascending stack

4) Empty, descending stack

Figure 12.3. Four implementations of a stack.

Obviously, we can have both ascending and descending stacks which can be
full or empty. This gives us the four possible stack implementations listed in
figure 12.3.

Implementing Stacks Using LDM and STM

The LDM and STM instructions provide the facilities to implement stacks in ~
machine code. The elements pushed to, and pulled from, the stack are the

142

Stacks and LDM/STM

register contents specified in the instruction's register list. This means that
we can push or pull several items in a single instruction.

The stack pointer is implemented using the instruction's base register. This
always points to the address in memory where the instruction will store or
load data. From now we will refer to this register as the stack pointer. Re
gister R13 is used most often for this purpose although any register could
be used.

Initially, the stack pointer will be set to contain the base address of the
stack's memory area. Write back can then be used with the LDM and STM in
structions to make the ARM automatically update the stack pointer each
time registers are pushed to the stack or pulled from it. Remember that in
this type of stack, the stack pointer always points to the next free space on
the stack, ie, immediately after the last item pushed.

When we push registers on this stack, we obviously want the registers to be
stored ascendingly in memory. Also, as the stack is empty, we want the
address used to be incremented after storing each register. This will ensure
that the first register is stored at the address contained in the stack pointer.
Similarly, after all the registers have been stored, the current address will
be the location after the last item in the stack. The appropriate multiple
store instruction is as follows:

STMIA stack_pointer!,(register_list}

The use of write back is vital. Without it the stack pointer will never be up
~ dated and the stack will be corrupted.

When we pull registers off the stack, we need to use an LDM instruction
with a decrementing address. We do this because the items to be pulled are
located immediately before the address contained in the stack pointer. The
address in the stack pointer is the location immediately after the top item
on the stack. We must, therefore, decrement the address used before load-

/"""""'\ ing each register. The corresponding LDM instruction for this is as follows:

LDMDB stack_pointer!, (register_list}

To summarise, for an empty ascending stack, we use the following instruc
tions. Note that the options for the STM instruction are always reversed in
the case of the LDM instruction:

143

Archimedes Assembly Language

Push registers:

STMIA stack_pointer!,{register_list)

Pull registers:

LDMDB stack_pointer!, {register_list)

It can be a bit confusing to have to translate the stack type used into LDM
and STM instructions with appropriate increment/ decrement and before/
after options! For this reason assembler provides an easier way.

We simply can specify the type of stack being used, which will be the same
for both instructions. The assembler will look at the stack type, whether the
instruction is LDM or STM and choose appropriate options for the instruc
tion. The stack type is specified using a different set of option codes. These
are given in figure 12.4.

FA Full, ascending stack
FD Full, descending stack
EA Empty, ascending stack
ED Empty, descending stack

Figure 12.4. Option codes for specifying stack types.

The empty ascending stack would thus be implemented as follows:

Push registers:

STMEA stack_pointer!,{register_list)

Pull registers:

LDMEA stack_pointer!,{register_list)

This clearer notation is used whenever the LDM/STM instructions are per
forming stack operations. The other codes, which reflect what is being
done by the instructions, are used when registers are being dumped and
reloaded from memory.

Listing 12.1 shows an implementation of a real stack. The stack is a full
ascending one. The program accepts characters from the keyboard until ~
you press RETURN. As each character is typed, its ASCII code is pushed onto
a stack. When you press RETURN, characters are pulled back off the stack

144

Stacks and LDM/STM

and printed until the stack is empty again. The characters will be outputted
in the reverse order to when they were input. This shows the LIFO nature of
the stack.

Listing 12.1. Example of machine code stacks.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

AAL-J

REM An Example of a stack using LDM and STM instructions
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language

REM The stack is a full-ascending type
REM Reserve space for the stack
DIM stack 256

return = 13 REM Character constant
count 2 REM Register counting characters entered

DIM code 512
P%=code
[

ADR R7,stack
mov count,#0
.get chars
SWI "os ReadC"
SWI "OS-WriteC"
STMFA R7! I (RO)
ADD count,count,#1
CMP RO,#return
BNE get chars
SWI "OS-NewLine"

Point R7 to bottom of stack
Set character counter to '0'
Loop to get and push characters
Read character in
Echo it to the screen
Push the character onto the stack
Increment the character count
See if the last character was return
If not, carry on getting characters
Print a new line

.pull chars Loop to pull chars from stack
LDMFA-R7!, (RO) Pull next char from stack
SWI "OS WriteC" ; Print the character
SUBS count,count,#1; Dec count of chars on stack
BNE pull chars If some remain repeat loop
SWI "OS NewLine" Print a new line

MOV Rl5,Rl4 Return to BASIC
l
PRINT
PRINT "Enter string now!"
REPEAT
PRINT
CALL code
UNTIL FALSE

145

Archimedes Assembly Language

Stack Application

Stacks are used extensively when data needs to be preserved in a general
way. This could be dumping the register contents to a stack on entry to a
routine and reloading them later. Several such routines could use the stack
and we would not, therefore, need to allocate separate memory areas for
each.

The beauty of the stack, however, is that its LIFO nature makes it ideal in
cases where nested constructions are being used. For example, when im
plementing subroutines, the return address of each routine could be saved
on a stack when it is called. This would allow sub-routine calls to be nested
arbitrarily. The return address of the most recently called subroutine
would always be the top item on the stack. Both the operating system and
BASIC make use of stacks in this way.

146

13 · The BASIC Assembler 2

In this chapter we return to the subject of the BASIC assembler. This was
covered briefly in Chapter Four, but we will now look at some of the more
advanced facilities.

OPT Settings

In Chapter Four we said that a listing was produced by the assembler by
default, but could be suppressed if required. This, and several other func
tions, are controlled by a special assembler command called OPT.

OPT is an example of an assembler directive or pseudo opcode. These
appear as source code in assembler in exactly the same way as an ARM
instruction mnemonic. However, they do not produce any machine code
when assembled. Instead, they direct the assembler to perform a special
function.

OPT is almost always the first instruction in an assembler program. It is fol
lowed by a single three-bit number, ie, in the range zero to seven, (or a
variable containing a number in the appropriate range). For example:

OPT 0
OPT p*3
OPT pass

Each bit in the number selects, or de-selects, a specific assembler function.
The functions controlled are: producing assembler listings, the reporting of
errors and offset assembly. The function of each bit is summarised in figure
13.1. All possible OPT settings (zero to seven) are listed in figure 13.2 on the
next page.

147

Archimedes Assembly Language

Bit 0 Assembler listing:

Bit 1 Error control:

Bit 3 Offset assembly:

0 = No listing produced
1 = Listing produced

0 =No errors reported
1 = Errors reported

0 =No offset assembly
1 = Offset assembly performed

Figure 13.1. Functions controlled by OIT bits.

OITO
OITl
OIT2
OIT3
OIT4
OITS
OIT6
OIT7

Offset
Assembly

No
No
No
No
Yes
Yes
Yes
Yes

Errors
Reported

No
No
Yes
Yes
No
No
Yes
Yes

Listing
Produced

No
Yes
No
Yes
No
Yes
No
Yes

Figure 13.2. All possible OIT settings.

If no OPT directive is used, then the default value of three is selected. This
corresponds to:

Listing produced
Errors reported
No offset assembly

Error Control

It may seem strange that the OIT directive can be used to prevent the error
reporting. After all, if there is an error in our code, then surely we would
want to know about it!

The reason for this is clear when we look closely at assembler's system of
defining and referencing labels. This is best illustrated by examining a real
program. Type in listing 13.1. When called from BASIC the routine out-

148

The BASIC Assembler 2

puts the character passed into register RO via the integer variable A%. If
this character's ASCII code is less than 32, the print instruction is skipped

~ using a forward branch.

~

~

~

Listing 13.1. Forward references.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200

REM The problems of forward references
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM .

REM Program will not work because of the forward reference

DIM output 256
P%= output
[
CMP R0,#32
BLT finish
SWI "OS WriteC:"
.finish

Compare character's ASCII value with 32
IF < 32 then skip print instruction
Print the character
Branch destination of skip print inst.

MOV PC,Rl4;
l

Return to BASIC

REPEAT
A%=GET
CALL output
UNTIL FALSE

So everything looks OK. The branch instruction will jump over the print
instruction to the 'finish' label, if RO is less than 32. However, run the
program and see what happens. Figure 13.3 shows the output produced.

>RUN
0000879C
0000879C E3500020 CMP R0,#32

Unknown or missing variable at line 120

Figure 13.3. The output produced by listing 13.1.

The assembler tries to assemble the branch instruction and finds a refer
ence to the label. However, at this stage it does not know the label address
and so it can't complete the assembly. An 'unknown or missing variable' er
ror message is displayed. It makes no difference if the label is defined later
on in the program. This is an example of a reference before a label defini
tion and occurs when we want to make forward references in our code.

149

Archimedes Assembly Language

The solution is to make the computer assemble the source code twice! The
first time we know errors will be produced because of forward references,
so we suppress them using the OPT directive. After this phase is completed,
assembler will have gone through the entire source program once. All the
label definitions in the program will, therefore, have been encountered, so
all labels used should now be defined.

Thus, the second time the program is assembled, all instructions which re
ference a label can be correctly assembled. This system is known as a two
pass assembler.

So much for the theory, but how do we implement two-pass assembler in
practice? Once more the fact that assembler is part of BASIC helps us. We
simply enclose the entire assembler section in a FOR. .. NEXT loop which re
peats the assembly twice. If we modify the previous program to incorpor
ate two-pass assembly, we arrive at listing 13.2.

Listing 13.2. Forward references using two-pass assembly.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

150

REM Forward references using 2 pass assembly
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM output 256

REM Use a FOR .. NEXT loop to implement 2 pass assembly

FOR pass = 0 TO 3 STEP 3
P%= output
[
OPT pass
CMP R0,#32
BLT finish
SW! "OS WriteC"
.finish-
MOV PC,R14
l

NEXT pass

REPEAT
A%=GET
CALL output
UNTIL FALSE

Select current pass option (0 or 3)
Compare character's ASCII value with 32
IF < 32 then skip print instruction
Print the character
Branch destination of skip print inst.
Return to BASIC

REM do the next pass

The BASIC Assembler 2

Note that the control variable of the loop (pass) is used to select an appro
priate OPT setting on each pass. On the first pass we want to suppress all
errors. Also the assembler listing is unlikely to be very helpful, so we sup
press it. Thus, we use an OPT 0 for the first pass.

On the second pass, any errors which occur are due to real mistakes in the
program, so we certainly want these to be reported. It is also useful to have
a listing at this stage. In pass two therefore, OPT 3 is used.

Offset Assembly

The need for offset assembly arises when we want to make the assembler
store the assembled machine code at an address other than the one where
it will ultimately execute.

This often happened on the BBC and Master series computers when side
ways ROMS were being written. Such programs were designed to execute
starting at address &8000, however, on a standard BBC micro the BASIC
ROM occupied this memory area. Programs, therefore, had to be assembled
to a different area of the computer's memory. Offset assembly allows us to
do exactly this.

The address at which the machine code will start when it is executed is still
placed in P% as normal. However, a second address (the address where
the code is to be stored by the assembler) is placed in the variable 0%. The
assembler assembles code exactly as if it were storing it in the address
contained in P%. However, it physically writes the machine code to the
address contained in 0%.

To select offset assembly, we simply use our normal OPT values but with bit
two also set. In most cases this gives values of four and seven for the two
assembler passes, rather than the values zero and three when the offset
assembly is not being used.

On the Archimedes, the ARM processor instruction set allows programs to
be written so that they are totally independent of the address where they
are executed. Such programs are called relocatable and can be loaded in at
any address and executed, no matter what original address they were
assembled at.

151

Archimedes Assembly Language

Writing relocatable programs makes offset assembly almost redundant and
is a much better practice to get into. There are still uses for offset assembly,
but in most cases it will not be required.

Storing Data in Assembly Programs

In all but the simplest machine code programs, we have to make use of
some memory as workspace. This may be needed to store text strings, data
tables, variables and so on, or perhaps just to act as scratch areas for
various routines to use. The assembler has a series of directives which
allow us to reserve given amounts of memory for purposes such as these. It
also allows us to define the contents of the memory reserved.

The directives provided are shown in figure 13.4 together with the number
of bytes that each reserves. When one of these directives is assembled, the
argument following the directive is evaluated and the result is stored in
memory. The value of P% is then incremented by the appropriate amount.
For example:

EQUB 20

would store the number 20 in the next memory location and increment P%
by one byte. Similarly:

EQUD &12345678

would store the number &12345678 as a four-byte number and increment
P% by four.

Directive's Alternative Function
na111e naine

EQUB
EQUW
EQUD
EQUS

OCB
DCW
IXD

Reserve one byte
Reserve one 'word' (two bytes)
Reserve a double 'word' (four bytes)
Reserve string (zero to 255 characters)

Figure 13.4. Data defining and space reserving directives.

Note, that in the context of the EQU directives a 'word' refers to 16 bits (two
bytes) of memory rather than the 32 bits (four bytes) which we would
expect on the ARM. Thus, EQUW reserves two bytes of memory and EQUD

152

The BASIC Assembler 2

(Equate double word) reserves four bytes. This discrepancy is due to the
desire to keep the commands compatible with those available on the BBC
micro where the terminology is slightly different.

The EQUS directive is different from the others in that it takes a string as its
argument. This string is copied character by character into memory. P% is

/\ then incremented by the length of the string so that it points to the location
immediately after the string.

Listing 13.3 shows some examples of using the EQU directives. In the pro
gram a series of strings are stored using the EQUS directive. Following each
string is a zero byte which marks the end of the string. The operating
system SWI routine (OS_ WriteO) is used to print the strings.

Listing 13.3. Using the EQU directives.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

REM Printing strings created by EQU directives
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM print_strings 256

REM Two Pass assembly again
FOR pass = 0 TO 3 STEP 3
P%= print strings
[-

OPT pass

ADR RO,stringl
SWI "OS WriteO"
SWI "OS-NewLine"

ADR RO,string2
SWI "OS WriteO"
SWI "OS-NewLine"

ADR R0,string3
SWI "OS WriteO"
SWI "OS-NewLine"

ADR RO,string4
SWI "OS WriteO"
SWI "OS-NewLine"

MOV PC,R14

Get address of first string into RO
Use SWI to print the string
Output a Newline

Get address of second string into RO
Use SWI to print the string
Output a Newline

Get address of third string into RO
Use SWI to print the string
Output a Newline

Get address of fourth string into RO
Use SWI to print the string
Output a Newline

; . Return to BASIC

; Store strings using EQUS. Terminate each string with

153

Archimedes Assembly Language

340 ; a zero byte using EQUB
350
360 .stringl
370 EQUS "Hello ... this is the first string"
380 EQUB 0
390 .string2
400 EQUS "That was easy - here is the next string"
410 EQUB 0
420 .string3
430 EQUS "Printing strings is easy using SWI calls"
440 EQUB 0
450 .string4
460 EQUS "Good old ARTHUR!!"
470 EQUB 0
480 l
490 NEXT pass
500
510 CALL print_strings

Note that two-pass assembly is used because forward references are made
to the string starting labels. Note also, the use of the ADR directive to place
the start addresses of the strings into a register.

The ALIGN Directive

We have already said that the ARM processor requires all its instructions to
be stored on word boundaries, ie, at addresses which are divisible by four.
This immediately raises a problem with the use of the EQU directives. It is
possible, using EQUB, EQUW or EQUS to end up with a value of P% which is
not word-aligned. For example, consider the directive:

EQUS "This string contains 35 characters!"

This directive will store 35 characters in memory and add 35 to P%. If P% is
word-aligned to start with, the address it contains after the directive will
not be on a word boundary. If we now want to continue assembling in
structions, then we should correct the value of P% to make it word aligned
again. This can be done by using assembler's ALIGN directive.

When ALIGN is used in a program, the assembler checks the value of P% to
ensure that the address it contains is word-aligned. If it is not, an appro
priate number of bytes are added to the address in P% to correct it. Listing
13.4 gives an example of ALIGN. Run the listing and look at the addresses
printed in the left-hand column of the assembler listing. Verify that after

154

The BASIC Assembler 2

the EQUS directive, the address has become non-aligned but that after
ALIGN it is corrected.

Listing 13.4. Demonstration of the ALIGN directive.

10 REM THE ALIGN Directive
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40
50 DIM test 256
60 P% = test
70 [
80 EQUS "This string contains 35 characters!"
90 ; P% not word-aligned here

100 ALIGN
110 P% corrected - word-aligned again!
120

CALL Parameters

The full syntax of the CALL statement is:

CALL <address> {,<parameters>}

The optional parameters are a list of comma, separated ·BASIC variables,
the values of which are to be made available to the machine code routine.
CALL provides ways of passing information about these parameters to the
machine code routine. In addition to setting up registers RO to R8 from the
integer variables, CALL also sets up the following two registers:

R9: Pointer to parameters descriptor block
RIO: Number of parameters passed using CALL

When the routine is entered, register RIO always contains the number of
parameters given in the CALLing statement. In the following example,
therefore, RIO would contain four as four parameters are being passed:

CALL address, A,B$,table(),?&FFEE

Register R9 points to the memory block where a parameter list has been
created. This list has a two-word entry in it for each variable in the par
ameter list. An important point to note is that the entries in the parameter
block are set up in reverse order, ie, the entry for the last parameter in the
list appears first in the parameter block.

155

Archimedes Assembly Language

The first word of each entry is a pointer to the address where the variable
itself is stored. The second word contains a number which represents the
type of the variable passed. Figure 13.5 lists all the different type numbers.
It also gives examples of BASIC variables of each type and lists what the
associated address of each type points to.

Type
number

0
4
5
128
129
256+4
256+5
256+128

Object address
points to

Single byte number
Four-byte integer value
Real number (five bytes)
String information block
Terminated character string
Integer array block
Real array block
String array block

Examples of possible
BASIC variables

?var
!var, var%, var%(n)
var, var, var(n)
var$, var$(n)
$var
var%()
var()
var$()

Figure 13.5. Parameter types set up by CALL.

Note, the values of variables are not guaranteed to be stored at word
aligned addresses.

In the case of parameter types 4, 5 and 129 their address points to the
variable value. In other cases the address points to another information
block about the corresponding variable.

For BASIC string variables, type 128, the address in the parameter block
points to a string information block (SIB). This block is guaranteed to exist
at a word-aligned address and has the following format:

Bytes zero to four

Byte five

Pointer to the characters contained in
the string
Current number of characters in the string

Variables of type 256+ refer to arrays and require a more complicated
system and will not be described here. The section of the Archimedes User
Guide which deals with CALL contains full details.

An example should help to clarify the layout of the parameter block.
Consider the following statements:

156

The BASIC Assembler 2

table% = &1234
BS = "Dabs Press"
freddy = 69
CALL code,B$,table%,freddy

The 'code' routine will be entered with the following set up:

R9 = address of parameter block
RlO = 3 (as three parameters are being passed)

The corresponding parameter block created at the address in R9, is shown
in figure 13.6 below:

WordO
Word 1
Word2
Word3
Word4
Words

Pointer to value of 'freddy'------•~ 69
Type = 5 (real value)
Pointer to value of 'table%'-------•~ &1234
Type = 4 (integer value)

Pointer to a SIB for B$ l
Type = 128 (string variable)

SIB
Bytes 0-3 : Pointer to string ----i
Byte 4 : 10 __j

t
String : I DABS Press I

Figure 13.6. Example of parameter block set up by CALL

A simple example of passing string variables to machine code is given in
listing 13.5. It prints the string passed to it from BASIC. Note that the
method of accessing the word in the SIB (which contains the string contents
address) is more complicated than might be expected. We can't load the
word in a single instruction, however, as it is not guaranteed to be on a
word boundary.

157

Archimedes Assembly Language

Listing 13.5. Passing strings to machine code.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

REM Passing strings using the CALL statement
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM string 256
P%=string
[
; On entry CALL has set up a parameter block
; and made register R9 point to it

LDR

LDRB
LDRB
ORR
LDRB
ORR
LDRB
ORR

LDRB

RO, [R9]

R2, [RO, #3]
Rl, [RO, #2]
R2,Rl,R2,LSL#8
Rl, [RO, #1]
R2,Rl,R2,LSL#8
Rl, [RO, #0]
R2,Rl,R2,LSL#8

Rl, [RO, #4]

.print it
LDRB RO, [R2],#1
SW! "OS WriteC"
SUBS Rl,Rl, #1
BNE print_it

swI "OS NewLine"

Get Addr of SIB from Param block

Get the address of the string from
SIB - may not be word-aligned!

Get string length from SIB

Loop to print string

; Print a newline

MOV PC,R14; Return to BASIC
l

PRINT I I I

A$="freddy"
CALL string,A$
mac$ = "Archimedes RISC Machine"
CALL string,mac$
b$="this is a complicated way to print strings!!"
CALL string,b$

The Operating System from BASIC

As well as accessing our own machine code routines from BASIC, we will
frequently need to make use of the various operating system routines.
BASIC makes provision for this using the SYS statement. SYS gives access to

158

'\

The BASIC Assembler 2

the full range of operating system routines. These routines are usually
accessed by a SWI instruction in machine code. The syntax of the SYS
command is as follows:

SYS <routine>, <expression l i st> TO <variab l e l ist >; <fl ags>

'Routine' identifies which operating system routine we require. As with
sw1s, this may be given as the routine's number, or as a string containing
its name.

'Expression list' is a list of up to eight expressions or variables which are
used to pass information to the calling routine via the processor registers.
When evaluated, they must yield either a number or a string. If a number is
used, it is converted into an integer and stored in the appropriate ARM re
gister RO to R7. If a string is produced, a copy of it is placed on BASIC's
stack, and the corresponding register is set up as a pointer to it.

Variable list is a list of variables used to receive data from the called rou
tine. Again a list of up to eight variables can be given. Numeric variables
simply receive the value of the corresponding processor register RO to R7.
If a string variable is given then the corresponding register is assumed to
point to a string in memory, terminated by ASCII 0, 10 or 13. This string is
then copied into the given string variable.

The final part of the SYS statement is a variable which will have the con
tents of the status register copied into it on exit from the routine.

All parts of the SYS statement (except for routine) are optional and any
combination of the various parts is acceptable. An example of a SYS state
ment will be given shortly. It is slightly artificial because it doesn't corre
spond to any real operating system routine. However, it does show
examples of all the various possibilities within a SYS command:

SYS n,l,freddy ,A$,,3*G TO size,,name$,file% , vec (l); s tatus

CALL the operating system command 'n'

On entry:

Register RO = 1
Register RI =Value of '£reddy'
Register R2 = Pointer to a copy of A$

159

Archimedes Assembly Language

On exit:

Register R3 =Undefined
Register R4 = 3* value of G

size = Contents of register RO
names$= Copy of string pointed to by R2
file% = Contents of register R3
vec(l)= Contents of register R4
status= The processor status register

The SYS command allows us to access any operating system routine from
BASIC. Some examples are:

160

SYS "OS_Byte",0,0,0
SYS "OS_CLI","help"
SYS "OS_RemoveCursors"
SYS "OS_ReadC" TO char

Perform *FX 0,0,0
Perform *HELP
Turn cursors off
Read a character into char

14 · Techniques & Debugging i::zll
As it stands, Archimedes assembler is relatively simple when compared to
other dedicated assembler systems. However, because of the way that it is
integrated into BASIC, we can use the power of BASIC to enhance the assem
bler's facilities. In this section, two of these enhancements are described:

1) Macro assembly
2) Conditional assembly

~ In addition we will also examine the assembler's in-built debugger.

. ~

Macro Assembly

An assembler macro is a section of assembler code which has been given an
identifying name. When the name is quoted in the main assembler
program, the assembler will locate the corresponding macro and assemble
the instructions associated with it. After the macro has been assembled, the
main program continues.

As an example, we could write a piece of code which makes a 'beep' sound.
This could then be defined as a macro, having the name 'beep'. Whenever
we need a 'beep' in the main program, we simply quote the name of the
macro, and assembler will find and assemble the required instruction.

It is important not to confuse macros with subroutines. Subroutines are
triggered at execution time, whereas macros are processed at assembly
time. In the previous example, we do not create a 'beep' subroutine which
is jumped to from the main program when needed. Instead, when we quote
the macro, the assembler assembles the required instructions at the current
place in the program. This happens each time the macro is used. Thus, the
instructions associated with the macro are repeated in the main program
wherever the macro name was used .

The Archimedes BASIC assembler does not provide macros directly. How-
ever, we can implement a macro system quite easily using BASIC. This is

AAL- K

161

Archimedes Assembly Language

possible because of the way in which we are allowed to call BASIC functions
from within assembler. We have seen this before with functions such as
ASC() from assembler code:

MOV RO, #ASC ("A")

As well as being allowed to use the pre-defined BASIC functions, we can
also call user-defined functions (FNs). Thus, we can write statements like
the following:

[
MUL R0,Rl,R2
FNfreddy
ADD R0,R2,R3
l

Assembler will assemble the first instruction. It will then try to evaluate the
function on the second line and, in doing so, will call FNfreddy, which is
assumed to be defined elsewhere in the program.

When we are inside the function, we can use any BASIC statement including
re-entering the assembler and assembling other instructions.

We are now in a position to try to implement a real macro. Let's try the
'beep' example. Type in listing 14.1. The macro is defined as a function at
the end of the program, and is used several times throughout it. When the ~
macro is called, assembler is re-entered and the instructions to make a
'beep' are assembled.

Listing 14.1. The 'Beep' macro.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

162

REM Macro calls in the assembler
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM macro 1024

FOR pass = 0 TO 3 STEP 3
P% = macro
[
OPT pass

ADR RO,messagel
SWI "OS WriteO"
SWI "OS-NewLine"

Get address of first string into RO
Print string out
Print a Newline

I~

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
391
392
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

FNbeep

ADR RO,message2
SWI "OS WriteO"
SWI "OS-NewLine"
SWI "OS-ReadC"

FNbeep

MOV PC,Rl4

Techniques & Debugging

'call 'Beep' macro

Get address of second string into RO
Print string out
Print a Newline
Wait for a key to be pressed

Call 'Beep' macro again

Return to BASIC

; Define the strings to be printed
.messagel
EQUS "This is an example of a macro"
EQUB 0
.message2
EQUS "That beep was assembled from a MACRO ! !"
EQUW &OAOD
EQUS "Press a key to make another beep using macros"
EQUB 0
l
NEXT
PRINT' I I

CALL macro
END

REM Macro function which assembles the 'Beep' instructions
DEF FNbeep

LOCAL vdu,bell

vdu 256 : REM number of SWI block to perform VDU n
bell = 7 : REM Bell Character (VDU 7)

IF pass= 3 PRINT '"Expanding 'Beep' macro"

REM Re-enter the assembler to produce the Beep code

[OPT pass
SWI vdu + bell
l

PRINT
=O : REM Return to main program

If you look at the assembler listing, you will see that the instruction in the
'beep' macro was assembled as if it was part of the main program.

This example may seem a little like using a sledgehammer to crack a nut!
However, if the code contained in the macro is needed a lot, it saves us

163

Archimedes Assembly Language

from having to enter it each time. We can simply quote the macro name and
leave the rest to the assembler. Also, variables can be passed to the function
providing parameters for the macro. These could then vary the code which
is assembled in the macro. ~

Conditional Assembly

Conditional assembly is a technique in which only parts of an assembler
source program are assembled into machine code. Complete sections of
code can be included, or omitted, from the final machine code program de
pending on the state of program variables. This may be useful for produc
ing various versions of a program tailored to particular specific machine
or user requirements.

The close relationship between BASIC and assembler on the Archimedes
makes conditional assembly extremely easy to achieve. In the following
example, the section of code is only assembled if the value of the 'printer' is
true:

IF printer THEN
[

l

SWI
EQUS
EQUB
SWI
CMP
SWIEQ

END IF

"OS Writes"
"Output to printer?"
0
"OS ReadC"
RO,#ASC"y"
256+2

The section of code asks if the output should be sent to a printer and, if so,
enables it. If you don't have a printer, however, then a version of the
machine code program could be produced with this entire section missed.
This would simply require the 'printer' variable to be set to false.

Listing 14.2 gives a full example of conditional assembly. It is really a de
monstration of the operation of the ARM's shift facilities previously describ
ed in Chapter Seven. The program asks the user which shift instruction is
to be studied and then assembles appropriate instructions to do this using
conditional assembly.

164

,,

Techniques & Debugging

Listing 14.2. Conditional assembly- a demonstration.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

REM Combined demonstration - shifts and conditional assembly
REM (c) Michael Ginns 1988
REM Dabs Press Archimedes Assembly Language
REM

REM Display menu of available shift operations
MODE 15
FOR shifts = 1 TO 6
READ shift name$
PRINT ;shifts;") ";shift name$
NEXT -

REM Ask user to select one type of shift
REPEAT
INPUT ' "Which shift is to be studied :",choice
UNTIL choice >O AND choice <7

DIM demo prog 512
FOR pass-= 0 TO 3 STEP 3
P% = demo_prog

OPT pass
; Routine is eneter with the number to be shifted
; in RO. This is passed from A% when the routine
; is called.

MOV Rl0,Rl4
SWI "OS Writes"
EQUS "Before : %"
EQUB 0
BL print binary
SWI "OS NewLine"

Preserve Rl4 in RlO
Write string
String to be output
String terminator
Call subroutine, print RO in binary
Output a New line

REM Leave the assembly temporarily

REM Assemble appropriate shift instruction
IF choice 1 THEN [OPT pass
IF choice 2 THEN [OPT pass
IF choice 3 THEN [OPT pass
IF choice 4 THEN [OPT pass
IF choice 5 THEN [OPT pass
IF choice 6 THEN [OPT pass

REM Re-enter the assembler again
[
OPT pass

MOVS Rl,Rl,LSL R2
MOVS Rl,Rl,ASL R2
MOVS Rl,Rl,LSR R2
MOVS Rl,Rl,ASR R2
MOVS Rl,Rl,ROR R2
MOVS Rl,Rl,RRX

SWI "OS Writes" Write string

165

Archimedes Assembly Language

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930

EQUS "After : %"
EQUB 0
BL print binary
MOV PC,RlO

.print binary
MOV RO~ltO
ADC RO,RO,lt48
MOV R4, U << 31

.bits
TST Rl,R4
SWIEQ 256+ASC"0"
SWINE 256+ASC"l"
MOVS R4,R4,LSRltl
BNE bits
SWI "OS Writes"
EQUS " -Carry = "
EQUB 0
SWI "OS WriteC"
SWI "OS-NewLine"

MOV PC,14

l
NEXT pass

PRINT ''I

String to be output
String terminator
Print contents of RO in binary
Return to BASIC (addr preserved in RlO)

Binary print subroutine
explained in Chapter Eight

INPUT "Number to be shifted" , B$
B%=EVAL(B$) : REM Number may be in hex, binary or decimal
REPEAT
PRINT
INPUT "Shift by how many places " , C%
CALL demo prog
UNTIL FALSE

REM Names of the shift operations

DATA Logical shift left (LSL)
DATA Arithmetic shift left (ASL)
DATA Logical shift right (LSR)
DATA Arithmetic shift right (ASR)
DATA Rotate right (ROR)
DATA Rotate right with extend (RRX)

Mixing Macros and Conditional Assembly

We can create programs which use both macro and conditional assembly
techniques to achieve some very powerful results. We could, for example, ~
write a macro called 'debug' which, when called, assembles instructions in

166

,,

Techniques & Debugging

a program to output the contents of all the processor registers to the
computer screen.

Within the macro function, conditional assembly could be used to test the
value of a flag variable called 'debug'. The register outputting instructions
would only be assembled if this flag was true. This allows us to include the
debugging macro at key points in our program to help track down errors.
When the program is working, we can set the 'debug' flag to false, then
assemble the source, automatically omitting the debugging instructions.

Debugging Machine Code Programs

When we have written our machine code program, the chances are that it
will not work! So what do we do next? The problem with machine code is
that its low-level nature makes it very difficult to spot errors. We are
usually faced with a large collection of machine code instructions and the
only thing we know for certain is that they don't do what they should!

A useful technique, used in debugging, is to include instructions in the
program which print messages on the screen. These could be simple
diagnostic strings which let you know which part of a program is executing
and what is going on. Also, the contents of key memory locations, or
registers, could be output to aid in debugging. As stated, a program to help
with this is included on the disc accompanying the book.

When debugging any machine code programs, the most important rule is:

'Before executing any machine code,
save the assembler source program'

Machine code programs do not observe any of the nicities of BASIC when
they execute. In the event of an error, they will be more than happy to
scribble all over the BASIC program containing the assembler source in
structions. If this happens, then there is little that can be done other than
starting again and re-writing the program.

The Debugger

To make the process of finding and correcting errors less painful, the de
signers of the Archimedes include a machine code debugging system within
the operating system. This provides help in tracking down exactly what

167

Archimedes Assembly Language

your program is doing as it executes. We can then see why its behaviour is
not what was expected and correct it.

The commands provided by the debugger are as follows:

*DEBUG •QUIT

*BREAKS ET *BREAKCLR
*BREAKLIST *CONTINUE

*MEMORY *MEMORY!
*MEMORY A *SHOWREGS
*INITSTORE

Using the Debugger (*DEBUG and *QUIT)

All of the commands supported by the debugger can be used, like any other
star command, from most applications. However, we can explicitly enter a
'debugging environment' from which the commands can be issued. This is
done by typing '*DEBUG'. When in this environment, the prompt changes to: r'"""\

DEBUG*

Commands can then be entered as required without the need to prefix
them with the usual star.

To leave the debugging environment simply type 'QUIT'.

Breakpoints

The major debugging facility provided on the Archimedes is a system of
breakpoints. A breakpoint is a trap which is set at a given instruction in a
machine code program. When the ARM attempts to execute the instruction,
the breakpoint is triggered, halting the program at the given point. The
debugger is automatically re-entered and we can examine the register or
memory contents and set further breakpoints. After this, we can resume the
execution of the program from the instruction immediately following the
breakpoint.

168

Techniques & Debugging

*BREAKSET <address>

This will set a breakpoint at a specified address. This will be triggered
when the ARM attempts to execute the instruction at the given location.
Since all ARM instructions are word-aligned, the address of the breakpoint
should be word-aligned too.

When the breakpoint is triggered, the debugger will be re-entered and the
status of the processor (including the contents of all registers) will be dis
played on screen.

Note that the breakpoint should be set after the machine code program has
been assembled. The breakpoint will be overwritten if the program is re
assembled and will therefore need to be set each time this occurs.

*BREAKLIST

BREAKLIST produces a list of addresses where the breakpoints are set.

*BREAKCLR {<address>}

This command will remove the breakpoint previously set at the specified
address. The address is optional and, if omitted, will cause all breakpoints
to be cleared. Confirmation is asked for before clearing the breakpoints.

*CONTINUE

CONTINUE can be used to resume execution of a program previously halted
by a breakpoint trap.

Examining Memory and Registers

\ The next set of commands are used to examine, and in some cases modify,
the contents of both memory and the processor registers. When memory
addresses are given as arguments to the commands, they have the follow

/"\ ing form:

<addr/reg>

~ This means that either an immediate hexadecimal address can be quoted
or, alternatively, the name of a processor register may be given. In the

169

Archimedes Assembly Language

latter case, the address used by the instruction will be that contained in the
specified register.

When a range of memory is being specified, two such addresses will need to
be given. The first address is the start of the range, the second is the end.
An extra option is to prefix the second argument by a'+' character. This
will be taken as the size of the range starting at the first address.

*MEMORY {B} <addrl/regl> {<addr2/reg2>}

This command displays the specified range of memory. If the B option is
used, then data will be displayed as bytes, otherwise it will displayed as
words. All data is shown as hexadecimal quantities.

*MEMORYI <addrl/regl> {<addr2/reg2>}

This is equivalent to the *MEMORY command, except that memory words -~
are interpreted and displayed as ARM instructions. Thus, a disassembly of a
machine code program can be produced.

Note, the debugger's disassembler knows about more than just the normal
ARM instructions. In addition, it will disassemble co-processor instructions
and floating point instructions. This means that when disassembling some
chunks of memory, you may come across some very strange instructions
which you will not recognise. These are not, however, anything to do with
the ARM'S instruction set.

*MEMORYA {B} <addr/regl> {<data/reg2>}

This command is used to alter the contents of memory. If the optional B
suffix is present, memory will be displayed and altered in bytes, otherwise
words of memory will be used.

The address of the location to be altered is given by <addr/regl>. If argu
ment two is omitted, the debugger will then allow memory editing in inter
active mode, starting from the specified address. In this mode the follow
ing may be entered:

Hexadecimal number

170

Change the byte or word at the current address to the spec
ified value. As confirmation the new value will be displayed.

·\

Techniques & Debugging

RETURN Move to the next byte/word in the appropriate direction. By
default the direction is to move forward in memory this can
be changed, however.

+ Set 'direction' so that pressing RETURN moves onto the next
byte/word in memory.

Set 'direction' so that pressing RETURN moves back to the
previous byte/word in memory.

<Anything else>
Quit the command.

As an alternative to interactive mode, a single byte/word of memory can be
set to a given value by quoting the value as argument two in the command.

Note, a flexible memory editor is included on the accompanying disc for
this book - details in Appendix J.

*INITSTORE {<data/regl>}

This allows the contents of all the user memory to be initialised to contain
the given data. The data is assumed to be a four-byte word which will be

) replicated throughout user memory. If the command is issued without the
argument, then memory will be filled with &E1000090, which is the ARM's
representation of an undefined instruction.

*SHOWREG

This command shows the processor status, including the contents of all the
registers, when the last trap occurred. In most practical cases, this will be
when the last breakpoint was triggered. The contents of the registers are
given in hexadecimal.

171

15 · Interrupts and Events

The concept of an interrupt is a simple one, yet it is of fundamental
importance to most computer systems. Interrupts are used to allow the
various hardware devices and peripherals connected to the system, to gain
the attention of the CPU when they require servicing.

For example, the keyboard will generate an interrupt whenever a key is
pressed to it. This is a signal to the central processing unit that the
keyboard matrix should be scanned, and the ASCII value of the key pressed
entered into the keyboard buffer.

A useful analogy to draw when describing interrupts, is that of an office
worker filling in forms when the telephone rings. Normally, the worker
can get on with the main task of processing the forms. However, when the
telephone rings, the person immediately breaks off the previous task and
concentrates on answering the phone. When the call has been dealt with,
the worker goes back to previous task at exactly the point at which they
broke off. The work then continues as if the interruption never occurred.

This corresponds very closely with the interrupt system on a computer.
Normally, the CPU gets on with the task of executing programs. However,
if a peripheral device finds that it needs the services of the CPU for a partic
ular reason, then it will cause an interrupt. The CPU, after completing its
current instruction, will then break off its normal work and jump to a spec
ial routine in the operating system.

This routine, called the first level interrupt handler (FLIH), is responsible for
finding the device which caused the interrupt and jumping to an appro
priate routine to service it. The specific routine called by the FLIH, carries
out the task requested by the interrupt and resets the device so that it does
not continue signalling the same interrupt condition. The CPU then returns
to the interrupted task and resumes it as if nothing had happened.

Without an effective interrupt system, the CPU would have to spend large
amounts of its time checking around the various components of the system
to see if any require servicing. For the majority of the time none would

172

Interrupts and Events

require attention, and the time spent checking would therefore be wasted.
Obviously, the effect of this would be a much slower and less powerful
system for the user.

Interrupts on the Archimedes

~ The ARM supports two types of interrupts called:

Interrupt Requests
Fast Interrupt Requests

(IRQs)
(FIRQs)

Each of these has a separate interrupt control line entering the ARM chip.
Connected to these lines are the devices which are potential sources of
interrupts. Some of these devices are:

The disc interface
The keyboard interface
The video system
The Econet system (if fitted)
The serial interface
Various internal timers

The devices connected to the FIRQ line are defined as being high-priority
systems like the disc interface. High-priority in this context means that
when interrupts occur from these devices, it is vital they are serviced as
quickly as possible. They therefore take precedence over all other activities.

The IRQ line, by comparison, is connected to devices for which a slight delay
in servicing their interrupts is not so important. Thus, although IRQs are
serviced very quickly by interrupting normal processing tasks, their service
routines can themselves be interrupted by an FIRQ. The only time at which
an FIRQ will not be serviced immediately, is when the ARM is already pro
cessing a previous FIRQ signal.

Disabling Interrupts

/'"\ An exception to the above scheme comes when the user, or the operating
system, disables one (or both) of the interrupt systems. This will normally
be done when a particularly important piece of code is being run which

/'\ must be allowed completed without interruption. For example, when

173

Archimedes Assembly Language

manipulating the control registers on a hardware device it is not always a
good idea to let the device interrupt!

The ARM maintains two flags in its status register to control the action of
the interrupts. These are a bits 26 and 27. If the IRQ bit is set in the register,
then no IRQs will be allowed to interrupt the ARM. Similarly, if the FIRQ bit is
set, then no FIRQs will be serviced.

When operating in user mode, programs are prevented from modifying
these flags. However, in supervisor mode, setting or clearing the relevant
bits of RlS will enable or disable the corresponding interrupt system.

The operating system also provides us with two SWI calls to control the
interrupt system from user mode. These are:

SWI "OS IntOff"
SWI "OS-IntOn"

If IntOff is used, then all interrupts, both IRQ and FIRQ, are disabled. IntOn
must then be used to re-enable the interrupt system.

Interrupt Processing

When an interrupt occurs, the ARM always responds in the same uniform
way. This is summarised as follows:

1) Finish executing the current ARM instruction

2) Switch to the appropriate ARM processor mode (either IRQ mode
or FIRQ mode)

3) Move RlS into R14

4) Disable further interrupts. If IRQ, then only disable further IRQs,
otherwise disable both IRQs and FIRQs

5) Jump i:o the appropriate interrupt vector (either IRQ_ vec or
FIRQ_vec)

The ARM automatically switches into the appropriate mode to process the
interrupt. We have seen in Chapter Three that this causes some of the nor
mal processor registers to be replaced by special private ones. Thus, when

174

Interrupts and Events

the program counter and status flags are copied from RlS into Rl4, the
normal user mode version of R14 is not used.

Instead, RlS will be stored in the appropriate private register for the
mode, ie, either R14_IRQ or R14_FIRQ. The reason for taking a copy of RlS
is to allow the interrupted program to be returned to after the service
routine has completed.

The other private registers, which appear in interrupt modes, allow the
interrupt routines to use some registers without having to explicitly save
the contents of registers also used by other modes. In FIRQ mode there are
seven private registers available. This is because FIRQ routines must
execute very quickly, so we do not want the overhead of saving the
previous contents of any registers used.

When the appropriate mode has been entered, the interrupts are disabled.
This is to prevent subsequent interrupts from interrupting the service rou
tine before the original interrupt has been dealt with. Note, however, that
an IRQ service routine is allowed to be interrupted by an FIRQ.

The final action the ARM performs is to jump to the appropriate interrupt
vector, either IRQ_ vec or FIRQ_ vec. The concept of vectors is covered in the
next chapter. Basically, the action is to divert control to a constant known
point (the vector). From here we then jump to the specific interrupt handl
ing routine.

Returning From Interrupts

When the interrupt service routine has been performed, the operating
system must return to the original program which was interrupted. This is
done quite simply by using the following instruction:

SUBS R15,R14,#4

This restores the program counter so that the interrupted program can be
resumed from exactly the point at which it was suspended. The 'subtract 4'
calculation is required to correct for the effects of pipelining.

Providing that the interrupt handling routine has not corrupted any shared
registers or workspace, the program will continue executing as if the inter
rupt had never happened. On the Archimedes, interrupts are occurring and
being serviced continually without the user even realising it.

175

Archimedes Assembly Language

Writing Interrupt Routines

Normally, we don't need to concern ourselves with writing interrupt hand
lers. The operating system has routines which automatically take care of
most internal interrupts.

The operating system also provides support for linking user routines to im
portant system's events. This allows us to write code which will be called
whenever the appropriate event occurs, without intercepting the interrupt
system. (See Events and Vectors.)

Sometimes, however, we may need to write direct interrupt handling rou
tines. Perhaps we need to intercept interrupts to gain priority over the
operating system's handlers, or to handle interrupts from a new piece of
hardware. In these cases, we must observe the following rules when writ
ing an interrupt handling routine:

1) Do not re-enable interrupts in the handling routine. If this is done,
a second IRQ/FIRQ could interrupt the processor before it has
finished handling the first. In some cases this may be permissible,
but it requires great care and should be avoided if at all possible.

2) The interrupt routine should terminate very quickly. If it keeps
interrupts disabled for too long, then the normal Archimedes
background activities will grind to a halt. The keyboard will lock,
various software clocks will lose time, the sound system will cease
to operate and the video system's flashing colours and mouse
pointer will freeze.

3)

4)

176

All shared processor registers should be the same on exit from the
interrupt routine as they were on entry. This is absolutely vital if
the interrupted task is to be resumed correctly.

The interrupt handling routine should avoid calling operating
system routines. It is possible that one of these routines was only
half executed when it was interrupted by IRQ/FIRQ. If re-entered in
the interrupt routine, workspace could be disturbed causing the
routine to corrupt when resumed. Only operating system routines
which do not suffer from this problem, (re-entrant routines) can be
used in interrupt handling routines.

Interrupts and Events

Events

"\ As the computer operates, situations will frequently crop up which we
would like to know about and act on, eg, when a character enters a buffer.

I ~ These situations are called events, and the operating system can be made
~ to execute a user-supplied routine whenever an event occurs.

A full list of the events recognised by the system are given in figure 15.l.
Initially, all events are disabled. However, this can be changed using a pair
of *FX commands or their machine code OSBYTE equivalents:

*FX 13, <n>
*FX 14, <n>

Disable event<n>
Enable event <n>

Whenever an enabled event occurs, the operating system will call the event
vector (number &10). A user-routine must be linked to this vector to handle
the event. (See the next chapter for details about how to do this.) The hand
ling routine is entered with the event number in register RO. This allows

~ different events to be differentiated by the single event handler.

Event
number

0

1

/""\ 2

4

!"""'\ 5
6

~ 7

8
9
10

AAL- L

Cause of the
event

An output buffer has
become empty
Input buffer already full

A character has been placed
in an input buffer
V sync: scanning beam has
reached bottom of screen
Interval timer crossed zero
Escape condition detected

RS423 receiving error

Event generated by Econet
Event generated by the user
Mouse button has changed
state

Event entry information
(RO = event number)

Rl = Buffer number

Rl = Buffer number
R2 = Character which

couldn't be inserted
R2 =ASCII value of new

character

Rl =Serial device status
R2 = Character received

Rl =Mouse X co-ordinate
R2 = Mouse Y co-ordinate

177

Archimedes Assembly Language

11

R3 = Mouse button state
R4 = Lower four bytes of

real time centi-second
value

Key pressed/Released event Rl = zero if key pressed
Rl = one if key released
R2 = Key matrix number

Figure 15.1. Operating system events.

When writing event-triggered routines, the same rules should be observed
as those used when writing interrupt routines.

178

16 ·Vectors

Vectors are used to couple together a program which requires access to a
routine and the routine itself. When using a vector system, a program does
not call the required routine directly. All access is made through the vector.
It is the vector which contains the address of the corresponding routine.
For this reason, we therefore say that the vector provides indirect access to
the routine.

Vectors are useful for two reasons. First, they allow programs to access
standard routines without referencing their actual start address in me
mory. Thus, later on, if a routine needs to be moved to a different location,
all we have to do is modify the address stored in the vector. All the existing
software will still work and will not have to be individually modified.

The second advantage in using vectors, is that they can be intercepted. This
means that the normal address which they contain is replaced by the
address of a user-routine. Whenever any other program accesses services
through the vector, the user routine will be executed instead of the normal
one.

This is especially useful as most operating system tasks, eg, printing char
acters, disc access, error control, are all vectored. Thus, they can be inter
cepted to modify the system's behaviour in any way required.

ARM Hardware Vectors

The ARM processor itself makes use of certain vectors to deal with abnor
mal events which it cannot itself cope with. These are called the exception
vectors and are located at the very beginning of memory at addresses
&0000000 to &OOOOOlC. A list of the exception vectors is given in figure 16.1
which can be found on the next page.

179

Archimedes Assembly Language

&0000000
&0000004
&0000008
&OOOOOOC
&0000010
&0000014
&0000018
&OOOOOlC

ARM reset
Undefined instruction
Software interrupt (swr)
Abort (pre-fetch)
Abort (data)
Address exception
IRQ_Vec
FIRQ_Vec

Figure 16.1. The ARM's exception vectors. ~

These vectors are different to the normal 'software vectors' because the
ARM jumps to them directly if a specific event occurs in its internal hard-
ware. For example, if an instruction causes the ARM to attempt to access
non-existent memory then an address exception error will occur. In re-
sponse to this, the ARM will stop executing the program and jump to loca-
tion &0000014 - the address exception vector. ~ '

Each vector contains a branch instruction which causes the processor
to jump again, this time to a suitable operating system routine to handle
the exception.

Software Vectors

The operating system provides a whole series of vectors to provide access
to its internal routines. These are listed in figure 16.2 and are always used
whenever an operating system routine is called. Thus, when we use an swr
"os_ WriteC" instruction, the operating system accesses the write character
routine via an internal vector.

If we intercepted this vector, then our routine would be entered each time a
character is printed. When this happens, the processor registers will typic
ally contain some relevant information. In this example, register RO would
contain the ASCII value of the character which is to be printed.

Sometimes, we might need the intercepting routine to completely replace
the normal operating system one. More often, however, it will perform
some function, then pass control back to the normal routine. The control
system for vectors on the Archimedes provides support to allow either of
these things to be done.

180

r'\

Vectors

(&OI) ErrorV (&OE) ReadlineV
(&02) IrqV (&OF) FSControl
(&03) WrchV (&10) EventV
(&04) RdchV (&I4) INSV
(&05) CliV (&I5) REMV
(&06) ByteV (&I6) CNPV
(&07) WordV (&I7) UKVDU23V
(&08) FileV (&I8) UKSWIV
(&09) ArgsV (&I9) UKPLOTV
(&OA) BGetV (&IA) MouseV
(&OB) BPutV (&lB) VDUXV
(&OC) GBPBV (&IC) TickerV
(&OD) FindV (&ID) UpcallV

Figure I6.2. The operating system software vectors.

Intercepting Vectors

Before looking in detail at the various software vectors supported by the
operating system, we shall examine how such vectors can be intercepted.

Each vector has a list of routines associated with it which wish to be called
when the vector is used. Initially, each list only contains the default
operating system routine. However, we can add our own routines to any
list required. The operating system calls the routines in the vector's list in a
reverse order. Thus, our added routine will be called before the operating
system's default routine.

When our routine has been entered, we can perform any processing re
quired. We can then either allow the next routine in the list to be called, or
we can abort the list. Routines can therefore be added to the default oper
ating system, or can replace them completely.

Claiming Vectors

There are two SWI calls which are specially designed to help in the intercep
tion of the software vectors. The first of these is:

SWI "OS Claim"

I8I

Archimedes Assembly Language

This instruction is used to claim one of the vectors. Registers RO to R2 must
be set up in the following way before the call is made:

RO The number of the vector which is to be intercepted
Rl Address of the routine to be added to the vector's list
R2 A value which will be passed in R12 when the routine is called

The operating system will then add the corresponding routine's address to
the list of other routines to be called when the vector is used.

Releasing Vectors

Routines can be removed from a vector's call list by using:

SWI "OS Release"

with the following registers set up:

RO The number of the vector previously intercepted
Rl The address of the routine to be removed from the list
R2 The same value given in R2 when the vector was claimed

The operating system will then remove the specified routine from the
vector's call list. The routine will no longer be entered when the vector is
called. Other routines in the list will be unaffected.

Writing Vector Intercept Routines

There are some very important points to note when writing routines to
intercept vectors:

1) The state of all registers must be same on exit as they were on
entry to the routine. The exception to this is when a routine
associated with a vector is expected to return some results in one
of the registers.

2)

182

Registers may be preserved on an internal stack while they are
used. To push registers onf:o the stack, use:

STMFD R13!, {Register_list}

•

/"\ ' 4

I

,,

3)

4)

Vectors

To pull the values from the stack, use:

LDMFD R13!,{Register_list}

An intercepting routine will be entered in supervisor IRQ or FIRQ
mode depending on the type of vector.

When exiting from an intercept routine use:

MOV R15,R14

This will cause the operating system to enter the next routine in the
vector's call list, or return if the end of the list is reached. This exit
method should always be used if the default routine is to be entered
after the intercepting one.

5) If an ABORT list exit is required then use:

LDMFD R13!,{Rl5}

This will ensure that the call is not passed on down the vector list.
The normal use for this routine is when the user's intercepting
routine completely replaces the default operating system one.

The Operating System Vectors

The following section contains information on the function and use of each
of the operating system vectors.

For each vector, a series of entry conditions will be given. These define the
contents of various registers on entry to the routine linked to the vector.

Sometimes, an exit condition is also given. This defines the state of the re
gisters which would exist after the normal operating system routine had
been called through the vector. For example, the insert character into buf
fer routine, which is called through INSV, returns with the carry flag set if
buffer insertion failed. Some of the applications which call the routine will
act upon these returned results. Any intercepting routine must, therefore,
place appropriate values in the registers on exit.

183

Archimedes Assembly Language

Main Line System Vectors

Figure 16.3 shows the default operating system routines for this vector
group. A vector is called whenever the corresponding routine is used. All
access to the routines is directed through the appropriate vector.

The entry and exit conditions for these vectors are, in every case, exactly
the same as those for the default routines. These vectors will not, there
fore, be described any further. Full details of the entry I exit conditions can
be found under the appropriate routines, which are described in the Advan
ced User Guide.

Vector Vector Default routine
number name called

&OS CliV OS_CLI
&06 ByteV OS_BYTE
&07 WordV OS_WORD
&08 FileV OS_FILE
&09 ArgsV OS_ARGS
&OA BGetV OS_BGET
&OB BPutV OS_BPUT
&OC GBPBV OS_GBPB
&OD FindV OS_FIND
&OF FSCV OS_FSC

Figure 16.3. The mainstream vectors.

(&01) ErrorV: Error Vector

On entry: RO=Pointer to error block

On exit: No information returned

This vector is called every time an error occurs on the Archimedes. Norm
ally, it links to the error-handling routine reporting the error, or taking
appropriate action. It may be intercepted to give user routines a warning
of an impending error. However, it must pass the call on, so that the error
handler is called to deal with the error.

184

~ c

"\ .

~

~ 4

'

(&02) IrqV: Interrupt Request Vector

On entry: No information passed

On exit: No information returned

Vectors

This vector will be called in response to the ARM detecting an interrupt. It is
the software entry point to the first-level interrupt handler. The default
routine will discover the source of the interrupt and, if possible, call an ap
propriate handling routine.

If this vector is intercepted, then the user must be responsible for handling
interrupts from every possible device. Alternatively, the user-routine will
perform any processing necessary, then hand control back to the normal
routine. In this way, the user can add to the interrupt system without hav
ing to replace it.

If non-standard interrupts are being used, it is essential that a handling
routine is attached to this vector.

(&03) WrchV: Write Character Vector

On entry: RO = ASCII code of character to be written

On exit: No information returned

Whenever a character is printed, this vector is used.

(&04) RdchV: Read Character Vector

On entry: No information passed

On exit: RO = ASCII code of the character read

All calls to the operating systems read character routine are passed
through this vector. It is assumed that the routine called by the vector will
obtain the character, and return it in register RO.

185

Archimedes Assembly Language

(&OE) ReadLineV: Read a Line of Text Vector

On entry: RO = Pointer to the text buffer
RI = Maximum size of line
R2 = Lowest permissible ASCII character
R3 = Highest permissible ASCII character

On exit: Carry Set= Escape terminated entry
Rl = Length of buffer

All calls to the operating system's OS_ReadLine routine are directed
through this vector.

(&10) EventV: Event Vector

On entry: RO = Number of event
Rl-R4 =Depend on event

On exit: No information returned

Events are covered in Chapter 15. Whenever an event occurs, this vector is
called. Events are provided exclusively for the user. If any events are en
abled, therefore, this vector must be linked to a suitable service routine.

(&14) INSV: Insert Character into Buffer Vector

On entry: RO = Character to be inserted
Rl = Buffer number

On exit: R2 is undefined
Carry set = Insertion failed

Whenever a character is inserted into a system buffer, this vector is called.

(&15) REMV: Remove Character From Buffer
Vector

On entry: Rl = Buffer number

186

Overflow set = Buffer to be examined only
Overflow clear = Character is to be removed

.
4

.. ~

Vectors

On exit: RO= Next character to be removed (for examine buffer)
R2 = Character actually removed (for remove from buffer)
Carry set = Buffer was empty

Whenever a character is removed from a system buffer, this vector is the
one called.

(&16) CNPV: Count/Purge Buffer Vector

On entry: Rl =Buffer number
Overflow set = Purge all characters from buffer
Overflow clear = Count characters in the buffer
Carry set = Return number of buffer entries, if counting
Carry clear = Return number of buffer spaces, if counting

On exit: Rl is undefined
Rl = Number of spaces/ entries, if counting

(&17) UKVDU23V: Unknown VDU 23 Vector

On entry: RO = VDU 23 number

On exit: Rl = Pointer to the VDU queue

This vector is called in response to an unrecognised 'vDU 23,n' command.
The VDU command will be unrecognised if the value of 'n' is in the range 18
to 24 or 28 to 31.

This vector provides us with a very easy way to add new VDU23,n com
mands to the system.

(&18) UKSWIV: Unknown SWI Vector

On entry: RO = SWI number

On exit: No information returned

This vector is called in response to an an SWI instruction being executed; the
number of which is not known to the system. By trapping this vector, the

~ user can easily add new SWI commands to those normally available.

187

Archimedes Assembly Language

(&19) UKVDU25V: Unknown PLOT Vector

On entry: RO = PLOT number

On exit: No information returned

vou25 is the graphics plot command. This is normally followed by a byte
which defines the plot action to be taken; for example, plot a triangle. If the
plot option used is unknown, however, then this vector is called.

Graphics applications could trap this vector to add new plot commands to
the system.

(&lA) Mouse V: Mouse Vector

On entry: No information passed

On exit: RO = X position of mouse
Rl = Y position of mouse
R2 = Button status

The operating system directs all calls to os_Mouse along this vector. The
default routine investigates the state of the mouse, and returns informa
tion about it.

An alternative user-routine could intercept this vector and return similar
information derived from another source. For example, if a joystick is
added to the system, its position could be read by the intercepting routine
and returned as mouse co-ordinates. Any application which uses the mouse
would then work with a joystick.

(&lB) VDUXV: Special VDU Vector

On entry: VDU option requested

On exit: No information returned

Normally, VDU commands are sent directly to the VDU drivers. However, if
bit five of the OSWRCH destination flag is set using *FX3, the screen VDU
commands will be sent to this vector.

188

..-..
'

I ,,----....,

Vectors

This provides a way of implementing a user-defined output stream. If bit
five of the destination is set, then data usually sent to the screen, will pass
to the new stream via the intercepting routine. This vector is used by the
font manager.

(&lC) TickerV: 100 Hz Pacemaker Vector

On entry: No information passed

On exit: No information returned

The operating system calls this vector 100 times every second (once every
centi-second). If intercepted, this vector can be used for a variety of time
keeping functions.

(&lD) UpCallV: Warning Vector

On entry: No information passed

On exit: No information returned

This vector is called by the operating system when a filing system error has
just occurred. When called, the error will not yet have been reported. It
thus gives the application which issued the filing system command a chance
to take corrective action.

For example, if a disc has been changed, then the application could prompt
for the correct disc to be re-inserted, rather than reporting an error.

189

17 ·OS SWI Routines

The ARM's SWI instruction was described in Chapter 11. In the following
chapters, we will examine some of the most useful operating system rou
tines which can be accessed using SWis.

The SWI instruction is used to streamline and control access to operating
system facilities. It removes the need to directly access routines, devices
and workspace, thus making programs more independent of the oper
ating system.

Many routines accessed using sw1s have a very similar interface to those
provided on the earlier BBC micros and Master series machines. This gives
the system a very familiar feel to people who have programmed in
machine code on these machines.

A great many extra routines and functions exist on the Archimedes. Some
control the extra Archimedes facilities, such as the mouse, stereo sound and
enhanced graphics. Others provide services like character to number con
version and string input/output. These functions are often needed in pro
grams, but were sadly missing from earlier machines.

The number and range of the SWI routines provided is vast, and we can't
hope to cover them all. Instead only the most important ones were looked
at. Several more SWI routines will be described, in other chapters. A com
plete list of the operating system SWis is given in Appendix E. Full details of
these can be found in the Advanced User Guide. The SWI routines covered
here are collected into the following functionally related groups:

1) Input/ output facilities
2) Conversion facilities
3) Systems functions
4) Controlling the WIMP environment
5) Managing the font system

For each SWI, its name, its number, and the entry I exit conditions are given
together with a brief description of its purpose.

190

OS SWI Routines

Input/Output Facilities

"" The following SWI calls are provided by the operating system to ease the
problems of performing data input and output.

~ Character Input/Output

SWI "OS_ WriteC" (&00)

' ~

On entry: RO (low byte) = ASCII code of the character to be outputted

On exit: No information returned

This routine was called OSWRCH on the BBC micros and Masters. It per
forms the task of writing a single character, contained in the lower byte of
register RO, into the output stream.

Any character can be written in this way. This allows control characters to
be output to instruct the VDU drivers to perform special operations like
graphics plotting.

os_ WriteC will be found in almost all programs which perform input/ out
put. It has already been used in most of the example programs in this book.

SWI 256 + ASCII (&100-&lFF)

On entry: Nothing passed

On exit: No information returned

This is not a single SWI routine but a block of 256 routines. The routines do
not have separate names, but are consecutively numbered starting at 256
continuing to 511.

We will often want to output a single fixed character, for example,
CHR$(12) to clear the screen. It would be possible to load the appropriate
ASCII code into register RO and then call "os_WriteC". However, to save us
doing this each time, the operating system provides the block of 256
SWI calls.

191

Archimedes Assembly Language

Each of the sw1s in the block simply output one of the 256 characters in the
ASCII set. For example, SWI number 256 outputs CHR$(0), number 257 out
puts CHR$(1), and so on. To output character 'n', therefore, we simply use:

SWI 256+n

SWI 256+n is particularly useful as it doesn't corrupt any registers, and does
not require any registers to be set up before calling it. It therefore provides
an extremely easy way of outputting fixed individual characters.

SWI "OS ReadC" (&04)

On entry: Nothing passed

On exit: RO (low byte) = ASCII code of the character read.
Carry flag set if ESCAPE pressed

This routine was called OSRDCH on the earlier BBC and Master macros. It
reads a single character from the input stream and places its ASCII code in
the lower byte of register RO.

If the character entered is a 'special one', usually ESCAPE, then the carry
flag is set to indicate this.

String Input/Output

A common requirement in many programs is to read or write a complete
string of characters. The Archimedes operating system provides support
for both of these operations.

SWI "OS_ WriteO" (&02)

On entry: RO = Address of string to be output

On exit: RO = Pointer to the byte after the end of the string

This routine uses register RO to point to the address of a string in memory.
This string may be any length, but must be terminated by a character of
ASCII code 'O'. The string may contain characters of any ASCII codes except,
obviously, CHR$(0), as this is the terminator.

192

OS SWI Routines

When called, "os_ WriteO" will write each of the characters in the string to
the output stream until the end of string marker is reached.

\ A common method of including strings in a program is to place them at the
end of the code, using the EQUS directive, and 'EQUB O' to add the termina
tor. The string can then be labelled, and the label address loaded into re

l"\ gister RO using the ADR directive. An example of this was given in Chapter
13 when the use of the EQU directives was described.

SWI "OS_ WriteS" (&01)

On entry: Nothing passed

On exit: No information returned

This routine provides a quick way of writing fixed strings of characters to
the output stream.

There are no entry or exit parameters. The string to be written is assumed
to follow on directly from the swr instruction in the next word of memory.
Again, the string must be terminated by character of ASCII code 0.

When called, "os_WriteS", will output the characters in the string until the
terminator is reached. It will then modify the program counter so that the
ARM resumes execution of the program from the word which immediately
follows the end of the string. This makes programs look slightly strange, as
the executable instructions seem to be split up by text messages. However,
the operating system will take care of everything, and these type of pro
grams really do work!

The routine is frequently used to embed fixed program messages or
prompts in the code. For example, the following will display a prompt,
then wait for a key to be pressed:

AAL- M

SW! "OS Writes"
EQUS ("Press any key to continue:")
EQUB 0
SW! "OS ReadC"

193

Archimedes Assembly Language

SWI "OS_ReadLine" (&OE)

On entry: RO = Address of the buffer to hold string
Rl = Maximum length allowed for the string
R2 = Lowest permissible ASCII code entered into buffer
R3 = Highest permissible ASCII code entered into buffer

On exit: Rl = Length of the buffer
Carry flag set if ESCAPE was pressed during entry

Calling this routine will allow a program to read a complete line of text
from the input stream into an area of memory.

On entry, register RO must point to the memory area which is to act as a '~
buffer for the characters. Characters will be accepted and stored sequenti-
ally in this buffer, providing their ASCII codes are in the range set by R2 and
R3. The maximum number of characters which can be accepted is defined -~ j

by Rl. If an attempt is made to enter more than this number of characters,
VDU 7 will be issued and the characters will not be accepted.

During the input process, pressing DELETE will remove the last character
entered from both the screen and buffer. Also, pressing CTRL-U will cause
all of the characters, previously entered on the line to be removed.

String entry is terminated when either a line feed or a cartridge return is
entered. On exit, the specified memory area will contain the string. This
will always be terminated by a character of ASCII code &OD, irrespective of
how the input was terminated.

On BBC and Master micros, the ReadLine function is performed by OSWORD
0. This is available on the Archimedes for compatibility. However, the new
routine should be used in preference to the old one.

An example of using ReadLine is given when an INPUT template is dev
eloped in Chapter 20.

SWI "OS Newline" (&03)

This routine simply writes a 'newline' to the output stream. A 'newline' is
defined as being a line-feed character (&OA), followed by the return char
acter (&OD).

194

• I

OS SWI Routines

Conversion Routines

A common requirement in assembly programs is the ability to convert
between a numeric quantity and the string of characters representing the
numeric value. If we want to print the number contained in a memory
location, for example, we would need to convert the number into a string
of decimal digits, then print the string.

On BBC micros and Master series machines, there is no support for per
forming these conversions in machine code programs. However, because it
is such a common activity, the operating system on the Archimedes pro
vides routines to carry out such conversions. Routines are provided to con
vert a string of numeric digits into an actual numeric quantity, and also to
convert numbers into numeric strings using a variety of formats.

SWI "OS_ReadUnsigned" (&21)

On entry: RO = Default base to be used in conversion
Rl = Pointer to string of digits to be converted

On exit: R2 = The value which the string was converted to

This routine will convert a string of numeric characters into an actual num
ber. On entry to the routine, register Rl must have been set up to point to
the string of digits to be converted. Register RO should contain the number
base to be used when converting the number. In addition to this, the string
may contain a base number which over-rides the default one given in RO.
This is done as follows:

<base>_ <number> To select base for the conversion

or:

& To select hexadecimal for conversion

For example, the following strings are all suitable for conversion:

172
2_10100101000
8_777
&FFFF

No base specified, therefore use default
Specifies base two (binary)
Specifies base eight (octal)
Specifies hexadecimal

195

Archimedes Assembly Language

Any base from two to 36 may be used.

On exit from the routine, the value of the converted number is returned in
register R2. Note that this routine will only convert unsigned numbers -
negative quantities are not allowed. A routine is presented in Chapter 21
which shows an example of using the os_ReadUnsigned routine to mimic
the operation of BASIC's v AL statement. This program also contains addi- '
tionaI code to allow positive and negative numbers to be converted.

SWI "OS_BinaryToDecimal" (&28)

On entry: RO = Signed 32-bit number
Rl = Pointer to string buffer
R2 = Maximum length of buffer

On exit: Buffer contains cqnverted numeric string
R2 = Length of numeric string in the buffer

This routine provides the reverse operation to the previous one. It is en
tered with RO containing the signed 32-bit number to be converted. It will
then convert this number into the equivalent string of numeric digits which
represents it. These are stored in the string buffer pointed to by register Rl.
Register R2 is used to inform the routine how big the buffer is, and an error
will be given if the converted number doesn't fit into the buffer.

On exit from the routine, the buffer will contain the appropriate string of
numeric digits. If the number converted was negative, then the string will
be preceded by a '-' character. Note that the string is not terminated, its
length is returned in register R2.

'os_BinaryToDecimal' is used in Chapter 21 to implement an equivalent to
BASIC's STR statement in assembler.

Other Conversion Routines

The next group of sw1s provide similar functions to the previous routine, as
they convert a number into an equivalent string. However, they allow the
conversion to be performed in a variety of bases and formats. The SWI rou
tines are divided into call blocks each of which performs the same function
with a slightly different format. The names of each SWI in a block is almost

196

OS SWI Routines

I

•
~ the same, differing only in the last character which selects the format used.

The names used are as follows:

os_ ConvertHexN

' /"""\

OS ConvertCardinalN
os=ConvertlntegerN .
os_ ConvertBinaryN
os _ ConvertSpacedCardinalN
os _ ConvertSpacedlntegerN

Where N is a numerical suffix to the name, used to specify the format.

The entry and exit conditions of all the routines are:
I -"
' On entry: RO = Number to be converted

Rl =Pointer to string buffer to contain result
R2 = Maximum length of buffer

On exit: Buffer contains the converted numeric string
RO = Points to the string buffer
Rl = Points to the terminating zero byte in the buffer
R2 = Number of free bytes in the buffer

OS ConvertHexN (&DO - &D4)

The SWI calls in the group are used to convert the given number into a
hexadecimal string. The last character of the SWI name, N, may be 1, 2, 4, 6
or 8. This defines the number of hexadecimal digits produced in the result
ing string. Leading zeros will be included to the left of the number, to pad it
out to the specified number of digits.

Listing 17.1 contains a simple example of this routine. It uses
"os_ConvertHex8" to create an eight-character hexadecimal string repre-

'"\ senting the number &3E8.

Listing 17.1. Converting a number to a hexadecimal string.

/\ 10 REM Example of the 'number to hex string' routine
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
so
60 DIM buffer 32
70 DIM convert 256

197

Archimedes Assembly Language

80
90

100
110
120
130
140
150
160
170
180
190

P%=convert
[

MOV R0,#1000
ADR Rl,buffer
MOV R2,#32
SWI "OS ConvertHex8"
SWI "OS-WriteO"
MOV PC,R14
l

Number to be converted (&3E8)
Address of string buffer
Length of string buffer
Convert to hexadecimal string
Print the hexadecimal string
Back to BASIC

PRINT' "Numeric String is: ";
CALL convert
PRINT

OS_ConvertCardinalN (&DS - &DB)

The SWI calls in the group are used to convert the given number into a deci
mal string. The number is assumed to be unsigned, ie, all the bits of the
number are assumed to represent the number's magnitude.

The last character of the SWI name, N, may be 1, 2, 3 or 4. This specifies
how many bytes of register RO are occupied by the number to be converted.
For example, using os_ConvertCardinal4 will mean that a four-byte (32- .~
bit) number is being converted. The converted string is not padded with
leading zeros.

OS_ConvertlntegerN (&D9 - &DC)

This group of calls is exactly the same as the previous ones, except that the
number given in RO is assumed to be signed. It can thus be positive or nega
tive using two's complement format.

OS_ConvertBinaryN (&DD - &EO)

The SWI calls in the group are used to convert the given number into a str
ing of binary digits.

. 4

The last character of the SWI name, N, may be 1, 2, 3 or 4. This specifies
how many bytes of register RO are occupied by the number to be converted.
For example, using os_ConvertBinary3 will mean that a three-byte (24- "
bit) number is being converted. The converted string is always padded with
zeros to obtain the required number of digits. Listing 17.2 contains an
example of os_ConvertBinary4. ~

198

•

,,

OS SWI Routines

Listing 17.2. Converting numbers to binary.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

REM Example of the 'number to binary string' routine
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM buffer 64
DIM convert 256
P%=convert
[

MOV RO, #1000
ADR Rl,buffer
MOV R2,#64
SWI "OS ConvertBinary4"
SWI "OS-WriteO"
MOV PC,R14
l

Number to be converted
Address of string buffer
Length of string buffer
Convert to binary string
Print the binary string
Back to BASIC

PRINT' "String of binary digits is: ";
CALL convert
PRINT

OS_ConvertSpacedlntegerN (&El - &E4)

This group of calls is identical to os_ConvertCardinalN except that a
space is inserted at every three digits from the right. For example, the
following number:

2100245673

would be converted to the string:

2100245673

OS_ConvertSpacedCardinalN (&ES - &ES)

This group of calls is identical to os_ConvertlntegerN except that a space
is inserted at every three digits from the right. For example, the number:

-30459210

would be converted to the string:

-30 459 210

199

Archimedes Assembly Language

System Calls

This next group of SWI calls are used to perform various system-related "".
4 tasks. The first three (OSBYfE, OSWORD, OSCLI) are supported on the BBC and

Master micros. These are entry points to routines which provide a whole
range of functions. OSBYfE, for example, has an entry parameter which can
select up to 256 different OSBYfE routines. Most of the routines available on
the earlier machines are, where appropriate, included on the Archimedes.
Several additional ones have also been added to control the extra features
of the machine. ~

OSBYTE, OSWORD and oscu together now offer several hundred different
functions. This is obviously too many to describe here! For this reason, only
the method of accessing the three routines is described. Full details of the
functions available can be found in the Advanced User Guide.

SWI "OS BYTE" (&06)

On entry: RO = Action code
Rl = Parameter one (if required)
R2 = Parameter two (if required)

On exit: RO = Action code
Rl = May contain results (depends on routine called)
R2 = May contain results (depends on routine called)

OSBYfE is exactly equivalent to:

*FX a,x,y

Where 'a' is a number in the range zero to 255 specifying the particular os
BYTE routine to be called. 'X' and 'y' are parameters which may be needed
for certain routines.

Register RO is used to pass the OSBYfE routine number (a). Registers Rl and
R2 may be required to pass parameters. On exit from the routine, RO is pre
served. Rl and R2 may contain results from the particular routine called.

As an example, the command *FX12,l, which sets the keyboard auto-repeat
rate to one-hundreths of a second, would be implemented in assembler as:

200

OS SWI Routines

MOV RO, #12
MOV Rl,#1
SWI "OS BYTE"

Note that the second OSBYTE parameter is not needed by this command, so
the contents of register R2 are unimportant. Also the particular OSBYTE
command used does not return any results, so the contents of the registers
on exit are unimportant.

A complete list of the OSBYTE routines supported on the Archimedes is given
in Appendix F.

~ SWI "OS_ WORD" (&07)

On entry: RO = Action code
,...--,_ Rl = Address of the OSWORD parameter block

On exit: The parameter block may be modified to return results

OSWORD calls a variety of routines which perform added functions to those
provided by OSBYTE. The difference is that OSWORD routines typically need
more than the two parameters used by OSBYTE, so a memory parameter
block is used to pass them rather than the registers.

On entry, register RO should contain the number of the OSWORD routine
required. Register Rl must point to a parameter block in memory which
contains the data for the routine.

As an example of the use of OSWORD, we shall use OSWORD 10 to read
character definitions. The definition of all characters in the range 32 to 126
is read. For each character, the data is manipulated and used in a vou23
statement to define the character to be upsidedown! A program which does

-~ all this is given in listing 17.3.

Listing 17.3. Manipulating character definitions using OSWORD 10.

10 REM Example of OSWORD to redefine characters
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM redefine 256
70 DIM param_block 16 : REM Reserve for OSWORD parameter block

201

Archimedes Assembly Language

80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

REM Define constants and register names
vdu 256

offset = 4
ascii = 5

P%=redef ine
[

MOV ascii, #32
.char loop
MOV R0,#10
ADR Rl,param_block

STRB ascii, [Rl)
SWI "OS Word"

SWI vdu+23
MOV RO,ascii
SWI "OS WriteC"

MOV offset,#8
.redef loop
LDRB RO, [Rl,offset)
SWI "OS WriteC"
SUBS offset,offset,#1
BNE redef_loop

ADD ascii,ascii,#1
CMP ascii, #126
BLE char_loop

Initial character to be redefined
Loop to redefine each character
OSWORD 10
Pointer to parameter block

Store ASCII code in parameter block
Call OSWORD

Perform VDU23,ascii

Redefine the rows in the character
in reverse order
ie. row 1 as row 8

row 2 as row 7
and so on

Increment character ASCII code
See if all characters processed
If not, redefine next character

MOV PC,Rl4; Back to BASIC

CALL redefine

PRINT' I I

PRINT "Try turning your monitor upsidedown ! ! !"
PRINT "Enter '*FX 20' to return to normal"

A complete list of the various OSWORD routines is given in Appendix G.

SWI "OS_CLI" (&05)

On entry: RO= Address of command line string

On exit: Depends on the command executed

202

,,

OS SWI Routines

OSCLI is used to interpret and execute system commands. System com
mands are those which normally begin with a star character, for example,
*CAT, *SHOW and so on. Every time one of these commands is used, OSCLI is
called to process it.

On entry to the routine, register RO points to a string in memory which con
tains the command to be executed. This is simply the series of characters in
the command terminated by a carriage return (ASCII &OD).

When star commands are issued, the system normally allows special char
acters to be given, aliases to be used and so on. All of these features are
also available when OSCLI is called from machine code.

Listing 17.4 contains an assembly language program which uses oscu to
catalogue the disc.

Listing 17.4. Use OSCLI to catalogue a disc.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM Example of OSCLI to catalogue the disc
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

CLS
DIM cli com 256

FOR pass = 0 TO 3 STEP 3
P%=cli com
[
OPT pass

ADR RO, command
SWI "OS CLI"
MOV PC,Rl4

.command
EQUS "CAT"
EQUB &OD
l
NEXT

Initialise pointer to command string
Call OSCLI
Back to BASIC

Command to be executed
Terminate with &OD

PRINT '' ' "Executing *CAT from machine code now ! ! "
CALL cli com

203

Archimedes Assembly Language

SWI "OS_ReadPoint" (&02)

On entry: RO = X co-ordinate of point
Rl = Y co-ordinate of point

On exit: R2 = Colour of the specified point
R3 =Tint
R4 = Co-ordinate validity flag

This SWI call performs an equivalent function to OSWORD 9. It allows the
logical colour of a point, at any graphics co-ordinate, to be determined.

On entry to the routine, registers RO and Rl contain the x, y co-ordinates
of the point.

On exit, register R2 contains the colour of the point. R3 contains the colour
tint of the point in the top two bits. R4 contains zero if the point was on the
screen and minus one if it was outside.

SWI "OS_EntetOS" (&16)

On entry: No parameters

On exit: No information returned

This call is used to switch the ARM processor from user mode to supervisor
mode. This is needed if access is required to hardware devices, or if inter- ~
rupts are to be manipulated. These activities can only occur if a program is
running in supervisor mode.

When the call is issued, the processor mode switch comes into effect.
Subsequent instructions are then executed in supervisor mode. Register
R13 becomes a stack pointer for the operating system's stack, which can be
used if required. ,,

To return to user mode the following two instructions may be used:

TEQP PC,#0
MOVNV RO,RO

The second instruction is a null operation to allow the ARM to re
synchronise its register banks correctly.

204

OS SWI Routines

SWI "OS_ ValidateAddress" (&3A)

, /"\ On entry: RO = Start address of memory block to be checked
Rl = End address of memory block to be checked

On exit: Carry clear = Memory block valid
~ Carry set = Block contains an invalid address

Chapter Two described the memory management system on the
Archimedes. It was noted that physical memory was not provided over the
entire address space. This means that some memory addresses are illegal,
as they do not correspond to physical memory. Also, some addresses
cannot be accessed when the processor is in user mode.

This routine will check that every location in a block of memory is valid and
can be accessed. The start and end addresses of the block are passed in re
gisters RO and Rl. The carry flag indicates the block's validity on exit.

Interrupt Driven Routines

f r\ In Chapter 15 we saw how the Archimedes interrupt system worked. One
common use of interrupts is to execute a machine code routine at specific
time intervals, using interrupts from a hardware timer device.

This usually involves manipulating vectors, interrupts and the timer itself.
To make life easier, the operating system provides three SWI calls which
can set up timer-triggered routines. These are called:

os_ Call_After
os_CallEvery
os_RemoveTickerEvent

The first of these, os_Call_After, will call a given routine after a certain
time period has elapsed. The second, os_CallEvery, will call a routine re
peatedly at regular, definable, time intervals. The final routine,
os_RemoveTickerEvent, will cancel the previous command so that the rou
tine is no longer called.

When writing routines to be called in this way, the usual rules about writ
ing any interrupt driven routine should be observed.

205

Archimedes Assembly Language

The entry parameters for the three routines are given below.

SWI "OS_CallAfter" (&3B)

On entry: RO= Number of centi-seconds after which call is to be made
Rl = Address of the routine to call
R2 = The value which register R12 will contain when

the routine is called

SWI "OS_CallEvery" (&3C)

On entry: RO = Time interval between calls to the routine
Rl = Address of the routine to call
R2 = The value which register R12 will contain when

the routine is called

SWI "OS_RemoveTickerEvent" (&3D)

On entry: RO = Address of routine to be stopped
Rl = The value of R12 used when the routine is called

206

18 · WIMPs

Controlling the WIMP Enviroment

A major feature of the Archimedes system is its support of a WIMP environ
ment (Windows, Icons, Mice, Pull-down menus). The WIMP system pro
vides an alternative to the traditional way of communicating with the
computer using the keyboard. The user interacts with programs by moving
a mouse pointer and pressing its buttons. Options are displayed graphic
ally on the screen. These options are pointed to and selected by using
the mouse.

Obviously, a great deal of work is involved in producing the graphics re
quired in a WIMP environment. It would be very inconvenient, to say the
least, if we had to write code in each application program to do all this! For
this reason, the Arthur operating system includes a series of WIMP manage
ment routines which assist us when writing WIMP-based programs.

It is not feasible for the operating system to take over all responsibility for
controlling the WIMP system. Different applications programs use different
facilities in different ways. Trying to cater for every case would be imposs
ible! Instead, a two-way dialogue is undertaken between the WIMP man
agement system and our application program. The program instructs the
WIMP environment to perform actions on its behalf, for example drawing a
window, creating a menu and so on. The WIMP manager informs the pro
gram whenever a significant event occurs or whenever circumstances arise
which it can't itself deal with.

The program would be informed, for example, when the mouse pointer en
ters a window or when a mouse button is pressed. As a result of some other
action by the user, a part of the screen may need updating. For example, if
the user moves a window then the WIMP may calculate that several other
windows have become visible. It will, therefore, issue appropriate requests
to the application program to ask it to redraw the affected areas. This re
drawing may directly involve the application in some work, or may just re
quire it to call other WIMP routines to the work for it.

207

Archimedes Assembly Language

The WIMP manager in the Arthur operating system on the Archimedes is
very sophisticated. To describe every aspect of it would take a complete
book in itself! In this chapter, therefore, we shall only look at some of the
fundamental aspects of the system. We shall cover some of the most impor
tant routines which it provides, and see how these can be used to create
some windows of our own.

Accessing the Mouse

Most of the user's interactions with the mouse are reported to us indirectly
by the WIMP in the form of the events. However, there will be times when
we want to access the mouse directly. For example, when the mouse is
being used in a program without the full WIMP environment. The operating
system provides an SWI routine, specifically for this purpose, which is se
parate from the WIMP system. The routine is called os_Mouse and has the
following entry and exit parameters:

SWI "OS_Mouse"

Syntax:

SWI"OS Mouse"

On entry: No parameters

On exit: RO = Current mouse x co-ordinate
Rl = Current mouse y co-ordinate
R2 = State of mouse buttons
R3 = Time of last button change

The value returned in register R2 is made up from three bits which reflect
the state of the three mouse buttons. The bits are allocated as follows:

Bit
0
1
2

Button
Right button
Middle button
Left button

The mouse x and y co-ordinates are in the same range as the screen gra
phics co-ordinates, ie, 0 <= x <= 1279 and 0 <= y <= 1023. This makes it
very easy to draw using the mouse as no scaling is required. Listing 18.1
uses os_Mouse to implement a simple sketch pad. The mouse will draw on

208

WIMPs

the screen if the left button is pressed and the drawing colour can be chan
ged by pressing the middle button. The graphics used in this program are
explained in Chapter 24 where various graphics routines are covered.

Listing 18.1. A Simple sketch pad using the mouse.

10
20
30
40
50

REM Sketch PAD using the mouse
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

60 DIM sketch 256
70
80 REM
90 vdu

Define
256
18
25
69

constants and register names

100 gcol
110 plot
120 dot
130
140 col
150 x
160 y
170
180 P%
190 [
200

4
5
6

sketch

210
220

SWI "OS Mouse"
MOV x,RO

230 MOV y,Rl
240
250 TST R2,i%010

: REM Start of SWI block to perform VDU n

Get mouse data
Store x,y co-ords in other regs

See if middle button pressed
260 ADDNE col,col,i1<<20 If so, then increment the colour
270
280
290
300
310
320

SWI vdu+gcol
SWI vdu+O

Perform GCOLO,col (scaling 'col')

MOV RO,col,LSRi25
SWI "OS WriteC"

330 TST R2,i%100 ; See if left button pressed
; If not loop back 340 BEQ sketch

350
360
370
380
390
400
410
420
430
440
450

AAL-N

, This next section of code plots a point at
; the co-ordinates in registers 'x' and 'y'
; These were the current mouse co-ordinates

SWI vdu+plot
SWI vdu+dot
MOV RO,x
SWI "OS WriteC"
MOV RO, x, LSRi8
SWI "OS WriteC"

209

Archimedes Assembly Language

460 MOV RO,y
470 SW! "OS WriteC"
480 MOV RO,y,LSR#8
490 SW! "OS WriteC"
500
510 B sketch ; Branch to keep sketching points
520
530
540
550 MODE 15
560 *POINTER
570 E% =2«25
580 CALL sketch

Initialising the WIMP

Before any WIMP routines can be used, the WIMP manager must be initiali
sed. This sets up the screen and resets the manager. This is done using the
SWI routine:

SW! "Wimp_Initialise"

The routine requires no parameters and performs all the initialisation re
quired. It should be called once, just before an application starts using the
WIMP environment.

WIMP Windows

A window under the WIMP system is a screen area in which an application
may display graphics or text. Typically, the window will be surrounded on
the screen by a 'systems area'. This allows the mouse to manipulate the
window in a number of ways. For example, the window can be dragged to
another area of the screen, its dimensions can be changed, and so on.

When a window is defined, we actually specify two areas. The first is the
complete window size, called the window extent. This may be any size re
quired and need not fit on the screen. The second area specified is the vis
ible part of the window, called the work area. This is the area which will be
seen on the screen and, if the window extent is larger, will only show a
part of the total window contents. The system area around the window
can contain items called scroll bars. These allow the user to scroll the work
area over the entire window extent. In this way, the work area can be
made to display any part of the total window extent area. A typical win-

210

~ l •

•
'

WIMPs

dow is shown in figure 18.l. This also shows the functions of the various
system areas surrounding the work area.

Top/Behind Quit Full size toggle

(0,0)

"" '

I Tide (x, ,y,)

s
c

Window r
Extent

0

I
I

B
a
r

(xo·Yo)
Scroll Bar I

Change size

Figure 18.l. Layout of a typical WIMP window.

When we specify the work area, we do so by quoting the screen co
ordinates of the bottom-left and upper-right corners. This defines a rec
tangle on the screen in which the visible portion of the window will be dis
played. The window extent is defined in a similar way. However, this time
the co-ordinates are given relative to the top left-hand corner which is
normally taken to be at 0,0. Thus, to create a window, which in total size is
'h' high and 'w' wide, we would specify:

(0,-h)

and also:

(W,O)

211

Archimedes Assembly Language

An example will help to clarify this. Suppose we want to create a window
the total size of which is 2000 wide and 1500 high. The window extent
would be specified as follows:

Window extent: (0,-2000) , (1500,0)

We further want the visible portion of this window to be displayed with its
bottom left-hand comer at (100,200), and the size of the visible area is to be
400 units across and 180 units up. This makes the co-ordinates of the top
right-hand comer (100+400,200+180). The co-ordinates used to specify the
window work area are:

Work area: (100,200), (500,380)

Creating windows

Before a window can be used on the screen, its characteristics must be de- \
scribed to the WIMP. This is done by using the following SWI call, the entry
and exit parameters of which are given next:

SWI "Wimp_CreateWindow"

Syntax:

SWI "Wimp_CreateWindow"

On entry: RI = Pointer to a window description block

On exit: RO =Window handle.

The window handle is a number returned by the WIMP, which uniquely
identifies the particular window. This is used to specify which window is to
be operated on in other WIMP routines.

The window description block is simply an area of memory which holds all
of the parameters necessary to define the window. The contents of the
block are as follows:

Block+ 0:
Block+ 4:
Block+ 8:
Block+ 12:

212

X co-ordinate of bottom-left comer of work area (xO)
Y co-ordinate of bottom-left comer of work area (yO)
X co-ordinate of top-right comer of work area (xl)
Y co-ordinate of top-right comer of work area (yl)

.. .

• •
Block+ 16:
Block+ 20:
Block+ 24:
Block +28:
Block +32:
Block +33:
Block +34:
Block+35:
Block +36:
Block +37:
Block +38:
Block +39:
Block +40:
Block +44:
Block +48:
Block +52:
Block +56:
Block +60:
Block +64:
Block +68:
Block +72:
Block +84:
Block +88:

Scroll bar x position
Scroll bar y position

WIMPs

Handle to open window behind (-1 = top,-2 =bottom)
Flags/ status information
Window title foreground colour
Window title background colour
Work area foreground colour
Work area background colour
Scroll bars outer colour
Scroll bars inner colour
Colour of window title background when highlighted
Reserved
X co-ord of bottom-left comer of window extent (ExO)
Y co-ord of bottom-left comer of window extent (EyO)
X co-ord of top-right comer of window extent (Exl)
Y co-ord of top-right comer of window extent (Eyl)
Icon type flags for the title bar
'Button type flags' for work area
Sprite area control block
Reserved - must be &00000000
Window title string - maximum of 12 characters
Number of icons initially defined for window
Icon definitions (32 bytes per icon)

I r
' The work area and window extent co-ordinates are specified as described

in the previous section. If a window extent is specified so that it doesn't
completely contain the work area, then the WIMP will produce a 'bad work
area extent' error message.

The scroll bar positions are the initial offsets of the work area within the
window extent area. They specify exactly which part of the total window
area is to be displayed initially in the work area. Note that these co
ordinates are given relative to the top-left corner of the window extent,
which is usually at (O,O).

The window status flags define a further set of characteristics of the win
dow. The options are listed in figure 18.2. Any combination of options can

!"""\ be used by including the corresponding bit into the final number used.

213

Archimedes Assembly Language

Control Flags

Bit
0
1
2
3
4
5
6
7
8
9

Meaning if set
Window has a title bar
Window can be moved about the screen
Window has a vertical scroll bar
Window has a horizontal scroll bar
Window can be redrawn entirely by WIMP (no user graphics)
Window is a 'pane' onto a tool window
Window can be moved so that parts of it are off the screen
Window has no 'back' or 'quit' boxes
'Scroll request' made if scroll bars clicked (auto-repeat)
'Scroll request' made if scroll bars clicked (debounced)

Status Flags

Bit Meaning if set
16 Window is currently open
17 Window is 'on top', ie, not covered
18 Window has been toggled to full size

Figure 18.2. Window control flags.

The title bar 'icon' flags define exactly what is to be displayed as the title of
the window. These flags are the same as those used to define the type of

~·

any icon within a window and will be described later. For most purposes, ~
the value of this parameter will be 15, as this specifies that centered text, ie,
the window title string, is to be displayed in the title bar.

The 'work area button type' and 'sprite control flags' will not be described, ~
as they refer to more advanced facilities of the WIMP. These parameters
may each be set to zero to de-select the corresponding features.

The parameter at block + 84 specifies how many icons the window is to
contain initially. The bytes following this are used to store the definitions of
any icons used. The creation of icons is dealt with in the next section.

Icons

An icon can best be described as a sensitive area within a window which is
treated specially by the WIMP environment. Physically, an icon could be a

214

I !""\

' .

WIMPs

piece of text, a sprite or an anti-aliased font. Icons are an integral part of
the WIMP window. A window can be defined to contain several icons at
arbitrary co-ordinates. These automatically will be displayed whenever the
part of the window containing them becomes visible.

In addition to displaying icons automatically, the WIMP can also be instruc
ted to take special action when the mouse pointer and an icon interact. For
example, we can be notified whenever the pointer passes over an icon or
when it is selected by clicking the mouse button.

There are also a whole series of advanced facilities associated with icons.
For example, the WIMP can create a menu structure comprised of icons and
will then automatically handle the selection of items from the menu.
Writable icons can be created which allow text to be entered into them from
the keyboard under WIMP control.

For our purposes, we shall confine ourselves with simply looking at how a
simple icon can be defined and included within a window definition.

Defining Icons

When a window is defined, any number of icons can be included within it.
This is done by appending the relevant data onto the parameters in the
window definition block. You will recall that the parameter stored at block
+ 84 defined how many icons the window was to contain. Following this
are blocks of 32 bytes which contain the icon definition. The data in these 32-
byte blocks is as follows:

Byte

0 X co-ordinate of bottom-left corner of icon box
4 Y co-ordinate of bottom-left corner of icon box
8 X co-ordinate of top-right corner of icon box
12 Y co-ordinate of top-right corner of icon box
16 Icon control flags
20 Icon data

The icon box specifies the co-ordinates of the rectangle within the window
which is to contain the icon. The icon control flags define the characteristics
of the icon as follows:

215

Archimedes Assembly Language

Bit
0
1
2
3
4
5
6
7
8
9
10
11
12-15
16-20
21
22
23

Meaning when set
Icon contains text
Icon is a sprite
Icon has a border
Icon text is centred horizontally within box
Icon text is centred vertically within box
Icon has a filled background
Icon has anti-aliased font text
Icon requires application to redraw it
Icon data is 'indirected'
Icon text is right justified
If selected, don't cancel other selections
Reserved
Button type, controls icons response to being 'clicked'
Exclusive selection group of icon
Icon has been selected (inverted)
Icon cannot be selected by mouse (shaded)
Icon has been deleted

The final part of the icon block is the 12 bytes of actual icon data. This will
depend on exactly what type of object the icon is. If the icon is text, then the
data is a string of up to 12 bytes terminated by a character of ASCII code 13.
If the icon is a sprite, then the data is the name of the sprite. Finally, if the
icon is a writable object into which text can be entered, then the following
rule applies:

Word
0
4
8

Pointer to buffer to contain entered text
Pointer to validation string (minus one if none)
Length of buffer in bytes

When an icon is defined in a window in this way, it is allocated a handle
number which identifies it in other operations. The handle is unique to the
window containing the icon and is zero for the first icon defined, one for
the second and so on.

Opening Windows

-~ ..

So far, we have seen how to describe the characteristics of a window to the
WIMP manager. We have not, as yet, seen how we actually produce the
window on the screen. This is done quite simply by asking the WIMP man- \
ager to 'open the window', using the following SWI routine:

216

WIMPs

SWI "Wimp_OpenWindow"

Syntax:

SWI "Wirnp_OpenWindow"

On entry: Rl = Pointer to parameter block

On exit: Nothing returned

Once again, the routine makes use of a parameter block to pass informa
tion to the WIMP manager. The contents of this block are:

Block +O
Block+4
Block+8
Block+ 12
Block+ 16
Block+20
Block+24
Block+28

Handle of the window to be opened
X co-ordinate of bottom-left corner of work area (xO)
Y co-ordinate of bottom-left corner of work area (yO)
X co-ordinate of top-right corner of work area (xl)
Y co-ordinate of top-right corner of work area (yl)
Scroll bar x position
Scroll bar y position
Handle to open window behind (-1 =top, -2 =bottom)

The first parameter is the handle of the window to be opened and dis
played on the screen. This is the number which was returned when the win
dow was created.

The next six parameters are the familiar ones used when the window was
created. They define where the window is to be placed on the screen, how
big it is and which part of the total window area is to be displayed. These
parameters may be the same as those used when the window was created.
Alternatively, they can be changed to open the window anywhere on the
screen and at any size.

The final parameter refers to where a window should be placed in respect
to other windows which may already be on the screen. Specifying '-1' for
example, will ensure the new window appears on top of existing ones.

When the Open Window request has been made, the WIMP will make the
necessary calculations to display the window at the required position in the
screen. However, it will not draw the window at this time. Instead, the
graphics are said to be 'pending' and will be produced when the WIMP poll
ing routine is called. This routine is described in the next section.

217

Archimedes Assembly Language

Polling the WIMP

Earlier we said that the application program and the WIMP manager took
part in a two-way dialogue. So far, this dialogue has only been one-way,
with our program telling the WIMP manager about the layout of windows
and requesting them to be opened. The WIMP's 'poll' routine allows the
WIMP to send information and requests back to the application program.
The entry and exit conditions of the routine are:

SWI "Wimp_Poll"

Syntax:

SWI "Wimp_Poll"

On entry: RO = Mask
Rl = Pointer to result block

On exit: RO = Reason code
Result block contains data depending on reason code

When this routine returns, register RO will contain a number which in
dicates which event or request the WIMP manager is informing us of. Each
of the possible codes are listed in figure 18.3.

On entering Wimp_Poll, register RO contained a mask. This allows some of
the reason codes to be effectively masked out so that they are not returned ~
to the user. Normally, however, the mask will be zero which allows all rea-
son codes to be passed on.

When Wimp _Poll returns with a reason code, the result block which is poin
ted to by Rl on entry, will contain further information about the request or
event.

218

Code
0
1

2
3
4
5

Reason
Null code - nothing has happened
Re-draw Window - request that application
redraws a window
Open Window - request that application opens a window
Close Window - request that application closes a window
Mouse pointer has just entered a window
Mouse pointer has just left a window

l -

I /"""\

If"\

.--

6
7
8
9
10

The mouse buttons have just changed state
The user has completed a box drag operation
A key has been pressed on the keyboard
Option selected from a menu
Request to scroll user graphics in the work area

Figure 18.3. Reason codes returned by Wimp Poll.

WIMPs

Reason codes one, two, three and 10 are requests for the application to per
form some operation which the WIMP could not directly handle. The re
maining codes simply inform the application of events which have occurred
which may be significant. These may be acted on, or ignored.

Let's look at some of the key reason codes returned by the WIMP in more
detail. Full explanations of all the codes are explained in the Advanced
User Guide.

Reason Code 1: Re-draw Window Request

This reason code indicates that, as a result of some user activity, a part of a
window is not up-to-date. The application therefore requests a redraw of
the af propriate section. This is done by asking the WIMP to calculate a full
list o the screen rectangles, the contents of which must be redrawn by the
application.

We shall restrict ourselves to creating windows which do not contain any
user-controlled graphics. Such windows can still contain icons, but can be
completely managed by the WIMP system. This reason code will not, there
fore, occur in these circumstances and we will not consider it any further.

Reason Code 2: Open Window

This reason code means that the WIMP requires that a window should be
opened at a specified position on the screen. This will be the case if an exist
ing window has been moved across the screen, changed in size, scrolled
and so on.

The results block returned with this reason code contains all the required
data to open the window. This is in exactly the same format as the para
meter block used by swr Wimp_OpenWindow. All the application has

219

Archimedes Assembly Language

to do, therefore, is to execute SWI Wimp_OpenWindow, using the WIMP
poll result block as the new parameter block.

Reason Code 3: Close Window

This reason code is issued when the user clicks the close window box. This
means that the specified window should be removed from the screen, and
the WIMP manager's list of active windows. The first word in the result
block, which is returned with the code, contains the handle if the window to
be closed.

The WIMP could immediately close the window itself. However, it issues
this reason code so that the application can decide whether the window
should be closed or not. The application could, for example, prompt for
confirmation before closing the window.

If the application decides that the window should be closed, it can instruct
the manager to do so using the routine with the following entry parameter:

SWI "Wimp_CloseWindow"

Syntax:

SWI "Wimp_CloseWindow"

On entry: Rl points to a parameter block

The first word in the parameter block is the handle of the window to be clo
sed. This is compatible with the result block returned by SWI Wimp _Poll.
This result block can, therefore, be used directly as the parameter block to
SWI Wimp_CloseWindow.

The action of closing a window doesn't remove the window's definition
from the WIMP manager's data tables. A closed window can still be re
opened at a later data if required. To completely remove a window from
the WIMP system we use the following:

SWI "Wimp_DeleteWindow"

Syntax:

SW! "Wimp_DeleteWindow"

220

WIMPs

/\
This removes the definition of the window from the WIMP system, thus
freeing the memory which it used to take up.

/\ An Example of a Simple Window Program

'•\

The problem with the window system is that a great deal of material has to
be understood and got right before you can get any results at all. It is for
this reason that we have gone through all of the essential elements of the
window manager before presenting any example programs. However, we
can now put the theory into practice and produce a small program which
demonstrates the use of windows.

The program is designed to be very simple so that the components of it can
be easily understood. Several complete window programs are included on
the Archimedes Welcome Disc and these show what can be done using the
same window primitives, but on a larger scale.

Listing 18.2 creates a window each time the middle mouse button is
pressed. These are displayed on the screen and the user can manipulate
them, eg, move them, change their sizes, and so on, by using the mouse.
Windows can be removed by clicking on 'Close Window'.

The title of each window is different and each includes an icon. This is
simply a piece of text saying 'icon' surrounded by a box. The dimensions of
the windows created are initially 300 x 120, however, the extent of the win
dows is much larger. This allows the window's size to be increased and the
scroll bars to be used.

The data defining the windows and icons is created in the assembly pro-
r"'\ gram using EQU directives. Note that it is important to use the ALIGN direc

tive to ensure that each block of data starts at a word-aligned address.

' ,,

The ARM instructions in the program are minimal, the main task being to
get all the data parameters correct. The program itself simply initialises
the WIMP and then enters a polling loop. This executes SWI Wimp_Poll and
tests the reason code returned. The following reason codes are recognised
and acted on by the program:

221

Archimedes Assembly Language

Reason code

1) Open Window

2) Close Window

3) Mouse button pressed

Action taken

SWI "Wimp_ Open Window" called

Window closed and deleted using:
SWI "Wimp_CloseWindow"
SWI "Wimp_DeleteWindow"

New window defined and opened using:
SWI "Wimp_CreateWindow"
SWI "Wimp_ Open Window"

Listing 18.2. Example of creating windows.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

222

REM Producing windows using the WIMP manager
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM windows 1024

REM Define register names
count 5
pointer = 4

FOR pass = 0 TO 3 STEP 3
P% = windows
[
OPT pass

MOV count,#0
SWI "Wimp_Initialise"·

.poll loop
MOV RO, #19
SWI "OS Byte"
MOV R0,#0
ADR Rl,result block
SWI "Wimp Poll"
CMP RO, #0-
BEQ poll_loop

Initialise window counter
Initialise WIMP manager

WIMP polling loop
*FX 19 - wait for vertical sync

Don't mask out any reason codes
Get address of result block into Rl
Poll the WIMP
See if NULL reason code
If so branch back and poll again

CMP R0,#2 ; See if it's reason code 2
SWIEQ "Wimp OpenWindow" If so, open specified window
BEQ poll_loop Branch back to polling loop

CMP RO, #3 See if it's reason code 3

~,

'

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860

WIMPs

SUBEQ count,count,#1
SWIEQ "Wimp CloseWindow"
SWIEQ "Wimp-DeleteWindow"
BEQ poll_loop

CMP RO, #6

Decrement window count
Close window
Delete window definition
Branch back to polling loop

See if it's reason code 6
BNE poll loop
CMP count, #30
BGE poll_loop

If not then branch back to polling loop
See if max imum number of windows are open
If so then branch back to polling routine

; Routine to create new window at mouse pointer co-ords

Increment the windows count ADD
ADR
MOV
MOV
SWI

count,count,#1
Rl,title suffix
RO,count-

Get the address of the title suffix
Add window number string to title

R2,#3
"OS_BinaryToDecimal"

ADR Rl,window def ; Get addr of window definition in Rl
SWI "Wimp_CreateWindow" Create new window

; This section of code opens new window on the screen

ADR pointer,open block; Get block addr of open routine
STR RO, [pointer,lOJ Store window handle in block + 0

SWI "OS Mouse"
STR RO,(pointer,#4]
STR Rl, [pointer,#8]
ADD RO,R0,#300
ADD Rl, Rl, #120
STR RO, [pointer,#12]
STR Rl, [pointer,#16]
MOV R0,#0
STR RO, [pointer,#20]
STR RO, [pointer,#24]

Get mouse co-ordiantes
Store x co-ordinate at block +4
Store y co-ordinate at block +8
Calculate X+300
Calculate Y+l20
Store X+300 in block+l2
Store Y+l20 in block+l6

Store '0' in block+20,24

MVN R0,#0 ; Store '-1' in block+28 (open window on top)
STR RO, [pointer,#28]
ADR Rl,open block
SWI "Wimp OpenWindow"
B poll_loop

ALIGN

Put address of open block in Rl
Open the new window- on the screen
Branch back to polling loop

; Set up the definition parameters for the windows
.window def

;Work Area
EQUD 100
EQUD 100
EQUD 400
EQUD 220

;Scroll Bar positions

xO
yO
x l
yl

223

Archimedes Assembly Language

870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

224

EQUD 0
EQUD 0

EQUD 0

EQUD 31
Is moveable

Horizontal
Vertical

Handle to open new window behind

Window flags ; Has title bar

Has vertical · scroll bar
Has horizontal scroll bar
Can be re-drawn without application

; Colours
EQUB 1
EQUB 2
EQUB 3
EQUB 4
EQUB 5
EQUB 6
EQUB 7

EQUB 0

;Window Extent
EQUD 0
EQUD -800
EQUD 800
EQUD 0

EQUD 25

EQUD 0
EQUD 0
EQUD 0

;Window Title
EQUS ("Window ")
.title suffix
EQUS <" ")

EQUD 1

Title foreground
Title background
Work area foreground
Work area background
Scroll bars outer colour
Scroll bars inner colour
Hightlight colour

Reserved

;exO
;eyO
;exl
;eyl

Title bar flags

Work area button type
Sprite area control
Reserved

; Number of icons in window

; Define
EQUD 75
EQUD -75
EQUD 225
EQUD -25

ICON bounding box
xO

EQUD %1101
EQUS "ICON"
EQUB 13

ALIGN

yO
xl
yl

ICON flags
;ICON text

I~

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

AAL--0

; Block used when opening windows
; The data is filled in by the program
.open block
EQUS STRING$(32,CHR$(0))

ALIGN
; Block used to return data from poll WIMP
.result block
EQUS STRING$(32,CHR$(0))

l
NEXT

MODE 12
GCOL128+15:CLG
VDU19,15,0,0,0,0
VDU 19,0,7,0,0,0
*POINTER
CALL windows

WIMPs

225

19 · Managing Fonts

The Archimedes includes an extension to the Arthur operating system
called the font manager. This provides an alternative to the normal,
limited, eight by eight characters usually displayed in the various screen
modes. The font manager allows us to paint characters of variable size and
proportion, in several high-quality typefaces anywhere on the screen. The
characters are proportionally spaced, can be micro-justified and are
displayed using special anti-aliasing techniques to reduce the effects of
limited screen resolution.

There are a great many facilities provided by the font system and we can't
hope to describe them all here. Instead, we will aim to cover the system in
general and give an idea of its capabilities. Sufficient routines will be ex
plained to allow us to use most features of the fonts in our own machine
code programs. For full details of every routine provided by the font man
ager, refer to the Advanced User Guide.

The Character Fonts

The character definitions for the fonts are held in disc files. Two are
supplied on the Archimedes Welcome Disc but it is possible for the user to
define his/her own. The characters for the font are defined in several
different point sizes within the files. This allows font characters to be
printed in different sizes without losing definition, as would be the case if
simple scaling is used.

When a font is requested, the font manager will load it from disc into a re
served area of memory known as the font cache. Future references to the
data in the font can then be made without accessing the disc each time. The
default size of the font cache is relatively small, and it is possible to run out
of space when using the fonts. However, the cache size can be made larger
using the operating system command:

*CONFIGURE FONTSIZE <n>

226

~·

•

Managing Fonts

Where n is the new number of memory blocks which are allocated to the
font manager.

The facilities of the font manager and font painter are accessed in two
ways, by using SWI calls or VDU control codes. The VDU codes are more con
venient in BASIC, whereas the SWI calls are more appropriate for machine
code programs. For this reason we shall, on the whole, use SWI calls to
manipulate the fonts.

\ Initialising a Font

Before we can use a font to output text to the screen, we must initialise it.
'\ The preferred way of doing this is by calling the SWI routine:

SWI "Font Find.Font"

This will locate the appropriate disc file which contains the required font
definitions. The data is loaded into the manager's font cache and is then
available for use. Any number of fonts can be initialised at one time, provid
ing that there is sufficient space in the font cache. This allows several fonts
of different sizes and typestyles to be used together .

• , \
The entry and exit conditions for "FindFont" are as follows:

SWI "Font_FindFont"

Syntax:

SWI "Font Find.Font"

On entry: Rl = Pointer to a string containing the font name
R2 = Required 'x' point size for the font
R3 = Required 'y' point size for the font
R4 = Screen x resolution (zero implies the default)
RS = Screen y resolution (zero implies the default)

On exit: RO = Font's handle

Remember that the font name is the path name on the disc which will
locate the font's definition files.

If the exact point size specified is not available in the font definition file,
the font manager will retrieve the nearest size to it. It will then perform

227

Archimedes Assembly Language

conversion algorithms to transform the font definitions to the character
exact size required.

The screen x and y resolution control how the font point size is converted
into screen co-ordinates. If these parameters are set to zero, then a default
will be assumed which is suitable for the screen mode selected when the call
is made. This is what normally happens, so it is important to select the ~
screen mode before initialising the font.

When the "FindFonts" call has been made, the font handle will be returned
in register RO. This is a number, unique to the font, which is used to identify
the font in future operations.

Painting Text in Different Fonts

When initialised, the characters making up a font can be painted directly on
the screen. The SWI call to do this is as follows:

SWI "Font_Paint"

Syntax:

SWI "Font Paint"

On entry: RI is a pointer to the string to be 'painted' on the screen
R2 = Plotting option
R3 = X co-ordinate
R4 = Y co-ordinate

The plotting option is a number in which individual bits select different
functions. The function of each bit is as follows:

Bit 0: Set Justify the text
Clear Don't justify the text

Bit 1: Set Rub out previous screen contents
before painting font

Clear No rub out used
Bit 2: Set Use absolute co-ordinates

(no alternative to this)
Bit 4: Set (x,y) given as normal graphics co-ordinates

Clear (x,y) given as 1/72000th of an inch

228

~

~

I . -

•
•

Managing Fonts

Both the rub-out and justification options assume that a suitable box has
been defined by previously moving the graphics cursor to the appropriate
screen co-ordinates.

Listing 19.1 gives an simple example of painting a font. Remember that the
disc containing the font definitions must be in the drive when the program
is run, otherwise the font won't be found.

Listing 19.1 Painting text in the 'Trinity' font.

10
20
30
40
so
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

REM Example of the painting text using the font manager
REM Note : Welcome Disc must be in drive
REM Shows problems of an undefined anti-aliasing palette
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

*I SET THE DEFAULT FONT PATH NAME HERE
*I NOTE : Check, using *FONTLIST, the complete font name of
*I a font that has been loaded. It is to this that
*I the font path name is prefixed.
*I The resulting filename should locate
*I the font file starting at the directory root

*SET Font$Prefix $.Fonts

DIM fonts 256

x_point_size
y_point_size
handle = 10

480 REM horizontal point size
320 REM vertical point size

FOR pass = 0 TO 3 STEP 3
P% = fonts
[
OPT pass

ADR Rl,font name
MOV R2,#x_point_size
MOV R3,#y point size
MOV R4, #0- -
MOV RS,#0

Path name of font file on disc

Default x,y screen resolution

SWI "Font FindFont"
MOV handle,RO

Get font into cache and initialise
Font handle returned in RO

ADR Rl,text
MOV R2,#2
MOV R3, #0

Text to be painted on screen
Plot mode - absolute OS coords
Paint text starting at (0,600)

229

Archimedes Assembly Language

410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

MOV R4,*600
SWI "Font Paint"

MOV PC,Rl4
MOV RO,handle
SWI "Font LoseFont"

MOV PC,R14

.font name
EQUS "Trinity.Medium"
EQUB 0

Paint the text

Put font handle into RO
Finished so inform manager

Back to BASIC

Name of font file on disc

.text ; Text message to be painted
EQUS "This is text produced by the FONT system"
EQUB 13
l
NEXT

MODE 12

CALL fonts

The first section of the program initialises the font. This may take several
seconds, and you should see the disc drive being accessed. After this, a text
string is output to the screen at position 100,500. You may be surprised at
the result of this! The characters are displayed in what seems to be a collec
tion of random coloured dots. This effect is due to the anti-aliasing system
which is covered in the next section.

Anti-aliasing

No matter how highly defined a font is, it will only be as good as the reso
lution of the screen mode in which it is displayed. The Archimedes has rela
tively high-definition screen modes, 640 x 256 pixels. However, the fonts
are defined to a much higher resolution than this, so there is bound to be
distortion when painting the characters. We can't, for example, illuminate
half of a pixel to represent a very thin line, even though the font definition
says that we could. Consequently, circles and angled lines tend to have
very jagged edges. Figure 19.1 illustrates the problem.

230

~ · •

Managing Fonts

Figure 19.1. The problems of limited resolution.

To overcome these restrictions, we use a technique called anti-aliasing.
Under this system, partially filled points are plotted as a pixel using a suit
able shade of grey. For example, if a half pixel should be used, then a who
le pixel whose colour is mid-way between the foreground and background
colours will be plotted. In this way, the edges of the plotted characters are
smoothed out.

The effectiveness of anti-aliasing depends on how many shades are avail
able for representing incomplete pixels. Two colours, for example, could
represent complete and half pixels but no smaller divisions. Adding
another shade to this would allow quarter pixels to be represented, effecti
vely doubling the apparent resolution of the displayed characters.

231

Archimedes Assembly Language

The Archimedes anti-aliasing system will support, at maximum, the use of
16 colours to represent part-filled pixels. The font painter will automatic
ally plot different logical colours, when painting characters, to represent
incomplete pixels. The logical colours used for this begin at the font fore
ground colour and include the next 'n' logical colours. N is the number of
colours used for anti-aliasing (16 by default).

It is up to us, however, to define the logical colours to be appropriate
shades of the foreground colour. This was not done in the previous ex
ample, and for this reason the 'multi-coloured' characters were produced.

Setting Up the Anti-aliasing Colour Palette

The font painter provides a VDU command to help in the re-definition of
logical colours as shades of a colour. This has the form:

VDU 23,25,128+<background logical colour>,<foreground
logical colour>,<Red start>,<Green start>,<Blue start>,
<Red finish>,<Green finish>,<Blue finish>

The logical colour numbers of the screen background and the font fore
ground make up the first two parameters. The next six parameters specify
two colours, 'start' and 'finish'. These are both defined in terms of their
red, green and blue components.

The start colour is used as the darkest shade when painting the font. This
will be the physical colour required as the background to the font. The 'fin
ish' colour is the lightest shade to be used in painting the font. This will be
the foreground colour. The font painter will then define each of the logical
anti-aliasing colours to lighten, beginning at the start colour and ending at
the finishing colour.

An example should make this clear. Suppose that we wanted to paint a
font in white and on a black background. The screen background will norm
ally be logical colour 'O', so the first parameter to the VDU command is
'128+0'. By default the logical colour for the foreground is '1' and so this is
the second parameter to the command.

Next, we must define the physical 'start' and 'finish' colours. Since our
background is black, the darkest shading colour is also black. This is our
'start' colour. This is represented in RGB terms as '0,0,0'. We also want the
foreground colour to be white. This will, therefore, be our lightest shade

232

Managing Fonts

and is thus the 'finish' colour. The last three parameters will, therefore, be
'255,255,255'. This is the RGB representation of white.

The complete command required is as follows:

VDU 23,25,128,1,0,0,0,255,255,255

Try typing this statement after listing 19.1 has been run, and see the 'ran
dom colours' in the font take on their correct shades of grey.

Listing 19.2 shows some effects of specifying different physical colours as
the 'start' and 'finish' values of the shading range.

Listing 19.2. Demonstration of anti-aliasing shading.

10
20
30
40
50
60
70
71
72
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

REM Example of the painting text using the font manager
REM Note : Welcome Disc must be in drive
REM Demo shows how anti-aliasing colours can be defined
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

*SET Font$Prefix $.Fonts

DIM fonts 256

x_;point_size
y_;point_size
handle = 10

480 REM horizontal point size
320 REM vertical point size

FOR pass = 0 TO 3 STEP 3
P% = fonts
[
OPT pass

ADR Rl,font name
MOV R2,#x_;point_size
MOV R3,#y_;point_size
MOV R4,#0
MOV R5,#0

Path name of font file on disc

Default x,y screen resolution

SWI "Font FindFont"
MOV handle, RO

Get font into cache and initialise
Font handle returned in RO

ADR Rl,text
MOV R2,*20
MOV R3,#0
MOV R4,#600
SWI "Font Paint"

Text to be painted on screen
Plot mode - absolute OS co-ords
Paint text starting at (0,600)

Paint the text

233

Archimedes Assembly Language

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

MOV RO,handle
SWI "Font LoseFont"

Put font handle into RO
Finished - inform manager

MOV PC,Rl4; Back to BASIC

.font name; Name of font file on disc
EQUS "Trinity.Medium"
EQUB 13
.text ; Text message to be painted
EQUS "This is text produced by the FONT system"
EQUB 13
l
NEXT

MODE 12

CALL fonts

REM Re-define anti-aliasing colours

PRINT TAB(0,20) "Press a key to change colours:"

FOR colours = 0 TO 10
READ Rstart,Gstart,Bstart
READ Rfinish,Gfinish,Bfinish
VDU 23,25,128,l,Rstart,Gstart,Bstart,Rfinish,Gfinish,Bfinish
key = GET
NEXT

DATA 0,0,0,255,0,0 :REM Red
DATA 0,0,0,0,255,0 :REM Green
DATA 0,0,0,0,0,255 :REM Blue
DATA 0,0,0,255,255,0 :REM Yellow
DATA 0,0,0,255,0,255 :REM Magenta
DATA 0,0,0,0,255,255 :REM Cyan
DATA 0,0,0,255,255,255 :REM White
DATA 0,0,0,255,140,0 :REM Gold
DATA 48,0,48,255,0,255 :REM Magenta on purple
DATA 0,0,255,255,255,255 :REM White on blue
DATA 255,255,255,0,0,0 :REM Black on white

The Anti-aliasing Transfer Function

In the previous discussions, we assumed that the font painter uses 16 logi
cal colours to produce anti-aliasing shading. This gives the best results for
a given font. However, this may not always be desirable. The usual screen
mode for producing fonts is mode 12. This offers the maximum number of
colours at the highest resolution without involving the complexities of the
256 colour modes.

234

Managing Fonts

In mode 12 there are normally 16 logical colours available. However, if we
paint characters using 16 colour levels for anti-aliasing, every colour in the
mode is taken up. Each of the 16 colours will be redefined by the font pain
ter to be a shade of the colour being painted. This means that we can only
display fonts in one colour!

If single colour text is all that is required, the rest of this section can be ig
nored! However, if we want to paint different coloured text, on the same
screen, then we must reduce the number of colours taken by the anti
aliasing function. Again, the font painter provides a VDU command to do
this. The syntax of the command is as follows:

VDU 23,25,<bits>,threshold l,threshold 2, ... threshold 7

In the command, bits specifies the number of bits to be used to represent the
anti-aliasing colours and must be in the range one to four. The relationship
between bits and colours used is given in figure 19.2.

Number of
bits

1
2
3
4

Colours used for
anti-aliasing

2
4
8

16

Figure 19.2 The relationship between bits and colours.

Using this command, we can specify that less than 16 colours should be
used for anti-aliasing. If we do this, the threshold values are used to deter
mine how the original 16 anti-aliasing colours should map to the reduced
number of colours used. This is best illustrated by an example as follows:

VDU 23,25,2,4,8,12,0,0,0,0

This specifies two bits · and therefore four colours to be used for anti
aliasing. We then define that, of the original 16 anti-aliasing colour num
bers, any less than four will be translated into colour one, any between four
and eight will be colour two, any between eight and 12 will be colour three
and any greater than 12 will be colour four.

By restricting the number of colours used for anti-aliasing, we increase the
number of colours in which we can display fonts on the same screen. For
example, using four anti-aliasing colours means that we can now have

235

Archimedes Assembly Language

paint characters in four different physical colours. Each of these physical
painting colours uses four logical colours for anti-aliasing shading. Thus,
we again use the maximum number of 16 colours available in the mode.

In the next sections we see how to change the font painting colour. An ex
ample of setting the anti-aliasing transfer function is given there.

Changing the Painting Colour

To select the colour in which a font is painted we use:

VDU 17,<col>

Where col is the logical colour to be painted. The VDU sequence must be out
putted together with the text being painted in the font. To do this, we in
clude the two control characters 17 and col in the string pointed to by Rl
when SWI Font_Paint is used.

Remember that the font will use logical colours col, col+l, col+2 ... col+n,
where n is the number of colours used for anti-aliasing. The program in
listing 19.3 paints characters in four different colours, each colour using
four anti-aliasing shades.

Listing 19.3. Painting text in different colours.

10
20
30
40
50
60
70
71
72
80
90

100
110
120
130
140
150
160
170
180
190
200

236

REM Example of the painting text using the font manager
REM Note : Welcome Disc must be in drive
REM Demo shows text Painting in several colours
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

*SET Font$Prefix $.Fonts

DIM fonts 1024

vdu = 256
x_point_size 480 : REM horizontal point size
y point size 320 : REM vertical point size
handle ;; 10

FOR pass = 0 TO 3 STEP 3
P% = fonts
[
OPT pass

ADR Rl,font_name Path name of font file on disc

210 MOV R2,#x_point_size
220 MOV R3,#y_point_size
230 MOV R4, #0
240 MOV RS, #0
250
260 SWI "Font FindFont"
270 MOV handle,RO
280
290 ADR Rl,text
300 MOV R2, #20
310 MOV R3, #0
320 MOV R4,#600
330 SWI "Font Paint"
340
350 ADR Rl, text2
360 MOV R2,#20
370 MOV R3, #0
380 MOV R4,#500
390 SWI "Font Paint"
400
410 ADR Rl,text3
420 MOV R2, #20
430 MOV R3, #0
440 MOV R4,#400
450 SWI "Font Paint ..
460
470 ADR Rl,text4
480 MOV R2,#20
490 MOV R3, #0
500 MOV R4,#300
510 SWI "Font Paint"
520
530 MOV RO, handle
540 SWI "Font LoseFont"
550
560 MOV PC, Rl4
570
580 .font name
590 EQUS "Trinity.Medium"
600 EQUB 13

.text
EQUB 17
EQUB 1

;
;

EQUS "This is Pink FONT
EQUB 13

.text2 ;
EQUB 17 ;
EQUB 4

Managing Fonts

Default x,y screen resolution

Get font into cache and initialise
Font handle returned in RO

Text to be painted on screen
Plot mode - absolute OS co-ords
Paint text starting at (0,600)

Paint the text

Text to be painted on screen
Plot mode - absolute OS co-ords
Paint text starting at (0,500)

Paint the text

Text to be painted on screen
Plot mode - absolute OS co-ords
Paint text starting at (0,400)

Paint the text

Text to be painted on screen
Plot mode - absolute OS co-ords
Paint text starting at (0,300)

Paint the text

Put font hanclle into RO
Finished - inform manager

Back to BASIC

Name of font file on disc

1st message in colour 1
Select text colour 1

Text"

2nd message in colour 4
Select text colour 4

610
620
630
640
650
660
670
680
690
700
710
720

EQUS "This is Gold FONT Text"
EQUB 13

237

Archimedes Assembly Lariguage

.text3
EQUB 17
EQUB 8
EQUS "This
EQUB 13

.text4
EQUB 17
EQUB 12
EQUS
EQUB

l
NEXT

"This
13

MODE 12

is Blue

is White

; 3rd message in colour 8
; Select text colour 8

FONT Text"

; 4th message in colour 12
; Select text colour 12

FONT Text"

730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

REM Select 4 anti-aliasing colours ie, 2 bits and set
REM transfer function to reduce the 16 colours down to 4
REM This can be done in machine code using the VDU template

VDU 23,25,2,4,8,12,0,0,0,0

REM Define the physical Shading colours for each of the
REM 4 logical painting colours (1,4,8,12)

1000
1010
1020
1030
1040
1050

VDU 23,25,128,1,0,0,0,255,0,255
VDU 23,25,128,4,0,0,0,255,140,0
VDU 23,25,128,8,0,0,0,96,96,255
VDU 23,25,128,12,0,0,0,255,255,255

CALL fonts

Losing Fonts

REM Colour 1 as pink
REM Colour 4 as gold
REM Colour 8 as blue
REM Colour 12 as white

When a font is no longer required, the following SWI call should be made:

SWI "Font_LoseFont"

Syntax:

SWI "Font LoseFont"

On entry: RO = font's handle

This will inform the font manager that the font definition can be overwrit
ten if extra cache memory is required for a new font.

238

I\ 20 ·Templates and I/O

In the previous chapters we have seen how ARM'S instructions may be
used. We have also seen something of the facilities provided by the ARTHUR
operating system. It should now be possible for us to sit down and write
any machine code program which may be required. However, for the be
ginner this is not always an easy task. Even for the experienced program
mer, it isn't always a good idea either!

Assembly programs are, by definition, very low-level. There is little
structure imposed on the programmer and, unless you are very careful,
programs start to grow haphazardly into a tangled mess of code. It's very
easy to get bogged down with the details of instructions, registers, memory
allocation and other implementation. This often results in obscure overall
logic and program structure.

Programs written in this way are fine, as long as they work first time and
never need modifying! Unfortunately, this is seldom the case. Trying to de
bug such a program is time-consuming and filled with difficulties. Often, a
re-write is the only solution.

What we need is a more systematic way of turning high-level program de
signs into assembler statements. The use of 'templates' provides a partial
solution to this problem. A template is a section of assembly code which im
plements, at least in outline, a single high-level statement or construct. In
our case, we will consider templates to model statements in BBC BASIC.

When a template has been written, it can be included into our assembly
code program each time the program design calls for the corresponding
high-level construction to be used. For example, each time we need to use a
FOR. .. NEXT loop in machine code, we can simply copy the relevant instruc
tions from the FOR. .. NEXT template.

The use of templates has a number of advantages as follows:

1) We can design programs in terms of high-level constructions
(usually BASIC). This allows us to get the overall logic and structure

239

Archimedes Assembly Language

of the program correct without having to worry about the details
of the assembly code.

2) By using templates each time a construct is needed, we produce
much more consistent code which is less likely to contain errors.

3) Any errors which do occur in the program are much easier to track
down. If we know that a template is correct and we have used it
consistently throughout, then we do not need to check each
occurrence of it within the program.

4) Finally, the process of writing assembly programs is made easier
and faster by using templates. There is no need to 're-invent' a
section of code each time we use it.

Obviously, templates do not provide a complete solution to writing
machine code programs. Programming in assembly language is different to
BASIC and these differences must be understood. However, templates do "'\ 4
help to give a little structure and order to our programs. Also, for
beginners, they provide an excellent way of bridging the seemingly
uncrossable gap between designing BASIC programs and machine code
ones.

In the following chapters, templates are developed for many of the state- r"\
ments available in BASIC. The statements are logically grouped and the fol
lowing are all covered:

Input/Output

INPUT
PRINT ~ ·
SPC
GET
POS ~
TAB
INKEY
VPOS

~

String Manipulation

String representation
String assignment

240

String concatenation
String comparison

LEN
INSTR
LEFI'$
STRING$
RIGHT$
VAL
MID$
SIR$

Miscellaneous Statements

SGN
DIV
AND
EOR
ARRAYS
SOUND
ABS
MOD
OR
NOT

~ Control Constructs

IF ... THEN ... ELSE ... ENDIF
LOGICAL AND/OR
REPEAT ... UNTIL
WHILE ... ENDWHILE
FOR. .. NEXT
CASE
PROCEDURES

Graphics

AAL-P

VDU
DRAW
RECTANGLE
CLS
POINT()

Templates and I/O

241

Archimedes Assembly Language

PWT
BY
FILL
CLG
ON
MOVE
LINE
ORIGIN
COLOUR
OFF
POINT
CIRCLE
MODE
GCOL
WAIT

Before describing the templates, it is important to note a few general con- ~
ventions relating to them.

Template Format

When presenting the templates, we shall often give only a fragment of an
assembly code program. This shows the assembly statements which imple
ment the template but do not necessarily include all the assembler formali
ties to make a complete assembled program. In other cases, where appro
priate, a full program may be given which provides a real example of how
the template may be used.

Register use

As well as specifying registers by number, we have seen that the assembler
also allows us to specify registers by a name. This is done using a variable
which has been set up to contain the number of the register with which it is
associated. Thus, throughout our program we refer to a register called
'file_handle'. At the beginning of the program we could set 'file_handle' to
one. This would cause the assembler to use register RI whenever
'file_handle' is quoted.

This system makes programs more readable and will often be adopted in
the template programs. When a template is presented as a program frag
ment, it is up to the programmer to allocate real register numbers to the

242

-~ t

Templates and 1/0

names used. This can be done in any way required as long as each unique
register name has a unique register number associated with it.

There is an exception! This happens when we need to use specific registers.
For example, when SWI calls are made, and specific registers are used, to
pass data to and from the operating system. In these cases, fixed register
numbers may be given in the code. Alternatively, names can still be used. In
this case, the statements at which a register number is assigned to the
name will be marked by a comment. This shows which register numbers are
fixed and must not be changed.

Input/Output

The first set of assembly templates we will look at perform simple
input/ output operations. The operating system provides considerable sup
port for this and SWI routines are frequently used.

INPUT

BASIC's input statement can be used to enter strings or numbers into pro
grams. In our assembler template we restrict ourselves to entering strings.
These can be processed using the VAL template to convert them to integer
numbers if required.

To implement INPUT in assembly code, we use the operating system's
os_ReadLine routine. This allows a complete string to be entered and
stored in memory. The parameters required for this are described in Chap
ter 17. The maximum line length for the input, and the maximum and mini
mum acceptable ASCII values of entered characters, can all be specified.

os_ReadLine will accept characters from the input stream and store them
consecutively in memory. Delete will remove the last character entered,
and pressing CTRL-U will delete the whole input line. If more than the maxi
mum permissible number of characters are entered, a 'beep' is issued and
no further characters are accepted. The routine terminates when RETURN is
pressed, or a new line (ASCII 10) is entered. The end of the string in memory
is always marked by a return (ASCII 13) character.

It is vital that a suitable area of memory is reserved to act as a buffer for
the entered characters. DIM or EQU are used for this in most cases. Listing
20.1 shows a very simple use of os_ReadLine. It implements an endless
loop which reads a string from the keyboard, then writes it out on screen.

243

Archimedes Assembly Language

Listing 20.1. INPUT template.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

244

REM Example of using the INPUT template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM input 256

REM Define names for registers used
pointer 0 REM Must use register RO
max length 1 REM Must use register Rl
min-ASCII 2 REM Must use register R2
max-ASCII 3 REM Must use register R3
base 4

REM Two pass assembly
FOR pass = 0 TO 3 STEP 3
P% = input
[
OPT pass

ADR pointer, buffer ;
MOV max length,#20
MOV min-ASCII,#32
MOV max=ASCII,#128

SWI "OS ReadLine"

Put line buffer addr in pointer reg
Set max line length to 20 characters
Minimum acceptable ASCII code is 32
Maximum acceptable ASCII code is 127

Input a line of text

; Print each character previously entered into the buffer

ADR base,buffer
.print loop
LDRB RO, [base],#1
SWI "OS WriteC"
CMP RO, 113
BNE print loop
SWI "OS NewLine"
B input-

Get line buffer start addr in base
Loop to output each char in buffer
Get next char (uses post index addr)
Output the character
See if we are at the end of the line
If not branch to output next char
Output a newline
Repeat the entire program

.buffer ; Reserve 32 spaces for the line buffer
EQUS STRING$(32,CHR$(0))

l
NEXT

PRINT 11 "Enter text lines now!" 11

CALL input

-\

~ · I

,,

I .~

Templates and 1/0

GET

The GET function makes the computer ~ait until a character is in the key
board buffer, then returns the ASCII value of it. The operating system rou
tine performing this task is called os_ReadC. This returns, when a key has
been pressed, with the ASCII code of the key in register RO. Full details are
again given in Chapter 17:

[
SWI "OS ReadC" Read Character - ASCII value in RO
l

INKEY

This statement is similar to GET except that it will wait for a key to be
pressed OR until a pre-determined time interval has elapsed - which ever
happens first. The command can also check whether or not a specific key is
depressed on the keyboard. OSBYfE call number 129 is used to do this.

As usual with OSBYTE, the RO register is used to pass the number of the
routine to be used - in this case 129. To read a key within 't' centi-seconds,
registers Rl and R2 are set up as follows:

Rl = t MOD 256
R2 = t DIV 256

When the routine returns, the contents of Rl and R2 contain a return result
which shows what happened. This is interpreted as:

Contents
ofR2
0

255
27

Result

A key was pressed within the time limit. The ASCII value
of the character is held in register Rl
The specified limit expired before any key was pressed
The ESCAPE key was pressed

To check on whether or not a specific key is pressed, the call is used in a
slightly different way. On entry to the routine, Rl and R2 are set up in the
following way:

Rl = The negative INKEY number of the key
R2 = 255

245

Archimedes Assembly Language

A full list of the negative INKEY numbers for every key is included in the
Archimedes User Guide, so we will not go into it here.

No time limit is specified when the routine is used in this way. It immedia
tely terminates and returns whether or not the specified key was pressed at
that moment. If registers Rl and R2 contain 255, then the specified key was
pressed, otherwise the key was not pressed.

Listing 20.2 gives an example of using INKEY in machine code programs. It
contains a loop which repeatedly waits for a key to be pressed within a
time limit of one second. If a key is pressed then the character is echoed on
the screen. The program also issues a beep after each call of INKEY, irre
spective of whether a key was pressed or not. The effect is that the pro
gram will beep every second or after each key press.

Listing 20.2. Demonstration of INKEY from machine code.

10 REM Example of the INKEY template
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
so
60 DIM inkey 256
70
80 REM Define constants
90 vdu = 256

100 beep = 7
llO
120 P% = inkey
130 [
140
150 .loop
160 MOV R0,#129
170 MOV Rl,#100
180 MOV R2,#0
190 SWI "OS Byte"
200 CMP R2, #O
210 MOVEQ RO,Rl
220 SWIEQ "OS WriteC"
230 SWI vdu +-beep
240 B loop
250 l
260
270 PRINT "Enter characters now ! ! "
280 CALL inkey

246

~ ·

\ t
•

. '
'

' '

Templates and I/O

PRINT

The actions of the BASIC PRINT statement are too varied to be represented
by a single assembly language template! There are a series of SWI calls
which perform some of the PRINT facilities. Calls are included to perform
the following:

Print single characters
Print strings of characters
Print signed integer numbers

Again, Chapter 17 contains details of the appropriate SWI routines which
perform these operations.

POS and VPOS

These two functions return the horizontal and vertical positions of the text
cursor on the screen. The operating system provides a routine to perform
the same operation. It is an OSBYfE call, number 134.

OSBYTE 134 takes no entry parameters and returns with the cursor's x and y
co-ordinates in registers Rl and R2 respectively. The code to obtain these
positions is as follows:

[
MOV RO,il34 OSBYTE call number is 134
SWI "OS Byte" POS and VPOS returned in Rl and R2
l -

This routine is used in the template for implementing the TAB() function.

SPC(n)

This statement takes a single integer argument and outputs that number of
spaces on the screen. In assembly language, we represent this by a simple
loop to output the correct number of spaces. This is shown in listing 20.3.
The number of spaces required is assumed to be contained in the register
called 'n'. In this example, 17 spaces are outputted followed by a '*' - so
that you can see the effect of the spaces!

247

Archimedes Assembly Language

Listing 20.3. SPC(n) template.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

TAB

REM Example of the SPC(n) template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

n = 0

vdu
space
star

256
32
42

DIM spc 256

REM Reg containing no. of spaces for output

REM Start no. of SWI block to perfrom VDU n
REM ASCII code for a space character
REM ASCII code for a 1 * 1 character

FOR pass = 0 TO 3 STEP 3
P% = spc
[
OPT pass

MOV n,#17 As an example, do SPC(l7)

.space loop
CMP n,lo
BEQ finished
SWI vdu+space
SUB n,n,#1
B space loop
.finished

SWI vdu+star

MOV PC,Rl4

l
NEXT

Loop to output required spaces
See if all space have been output
If they have then branch to end of routine
VDU 32
Dec 1 n 1 (the no. of spaces to be output)
Branch back to beginning of routine
End of routine label

VDU 42

Back to BASIC

PRINT 11 "Performing SPC(l7)"
CALL spc

There are two forms of the TAB statement. The first takes a single argu
ment specifying the horizontal position of the TAB. It then outputs enough
spaces to reach this position on the screen. If the cursor is already beyond
the specified position, then a newline is issued.

Obviously, in order to implement this statement, we must have some way
of knowing where the text cursor is! BASIC uses the COUNT variable.

248

·-~

~

~

/'"\

r ~

,

~ -~

-\

\
'--

r)

Templates and 1/0

However, in machine code the nearest we can get is to read the text
cursor's position using the routine in the POS template.

We can then subtract the current cursor position from the new TAB position
and calculate the number of spaces. If the result is negative, we are already
beyond the required TAB position and a new line must be outputted. Note
that the spaces needed are outputted using the SPC statement template. You
can see how the creation of standard templates is already becoming useful
in creating more complex routines!

The assembly code routine to perform TAB is illustrated in listing 20.4. It
assumes that the position to be T ABed to is contained in the register called
tab _pos. As an example, various strings are outputted from BASIC. After
each the TAB(n) routine is called, column 32 is TABed to, and a star is out
putted to show the new position.

Listing 20.4. TAB(n) template.

10
20
30
40
50
51
60
61
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
2ll
212
213
214
215
216
217
220

REM Example of the TAB(n) template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

REM Define names for registers .
n = 1 REM No. of spaces to be output
tab_pos = 3 REM Desired TAB position

vdu 256
space 32
star 42

DIM tab 256

REM Start no. of SWI block to do VDU n
REM ASCII code for a space character
REM ASCII code for a '*' character

FOR pass = 0 TO 3 STEP 3
P% = tab
[
OPT pass

As an example, do TAB(32) MOV tab_pos,#32

MOV RO, #134
SWI "OS_Byte"

Use POS template to get cursor position
x position returned in register 'n' (Rl)

SUBS
MOVMI
SW I MI

n,tab_pos,n; Do currect postion - required position
n,tab pos ; If negative result restore position
"OS_NewLine"; and output a newline

; Template to perfrom SPC(n)

249

Archimedes Assembly Language

221
222
230
240
250
260
270
280
290
300
301
310
320
330
340
350
360
370
380
390
400
401
402
403
404
405
406
407

; 'n' is the number of space to reach required TAB position

.space loop
CMP n-;#O
BEQ finished
SWI vdu+space
SUB n,n,#1
B space loop
.finished -

SWI vdu+star
SWI "OS NewLine"
MOV PC,R14

l
NEXT

PRINT "Hello !";
CALL tab

Loop to output required spaces
See if all space have been output
If so branch to end of routine
VDU 32
Decrement 'n'
Branch back to beginning of routine
End of routine label

VDU 42
Print a newline
Back to BASIC

PRINT "That was a TAB(32)";
CALL tab
PRINT "Any number could be used - 32 is only an example";
CALL tab
PRINT "That line was already past position 32";
CALL tab
PRINT "And so was that one!";
CALL tab

The second form of the TAB statement is as follows:

TAB (x,y)

This causes the text cursor to move directly to the position x,y on the
screen. Surprisingly, this is a much easier function to implement because
the operating system provides a VDU command to do it for us! VDU
31,<x>,<y> will place the text cursor at the position x,y. In assembly lan
guage we simply output character 31, followed by the new position of the
cursor. Listing 20.5 illustrates this. The registers called x and y are assumed
to contain the new screen position. In this example the cursor is moved to
position 10,15 on the screen.

Listing 20.5. TAB(x,y) template

250

10 REM Example of the TAB(x,y) template
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 REM Define register names

1

• t

Templates and 1/0

70 x = 1
2 80 y

90

REM x position
REM y position

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

vdu 256
MoveCursor

DIM tab2 256
P% = tab2
[

MOV x,UO
MOV y,U5

31

SWI vdu + MoveCursor
MOV RO,x
SWI "OS WriteC"
MOV RO,y
SWI "OS WriteC"

REM Start no. of SWI block to do VDU n
REM Control code - move cursor to (x,y)

As an example, peform TAB(l0,15)

Do 'move cursor' command (VDU
Put x pos into register RO
Output x pos to VDU drivers
Put y pos into register RO
Output y pos to VDU drivers

31)

MOV PC,R14; Back to BASIC

CLS
PRINT "Performing TAB(l0,15)";
CALL tab2

251

21 ·Manipulating Strings

In this chapter we will look at the representation and processing of strings
in machine code.

Representing Strings

In BASIC, we talk of string variables which contain sequences of characters.
In machine code, we do a similar thing. There are 256 different characters
available on the Archimedes, each of which has a unique number - its ASCII
code. A single character can thus be represented by a single byte of memory
containing its ASCII code. Strings can now be represented by storing the
characters they contain in consecutive bytes of memory.

So far so good. However, we also need to know how many characters are
contained in a string. BASIC solves this problem by storing the length of the
string in memory alongside the string itself. The operating system, on the
other hand, terminates all its strings with a special 'end of string marker', a
character of ASCII code 13, 10 or 0.

We shall adopt the convention that all strings are terminated by a carriage
return (ASCII 13). Strings in this form can be produced from BASIC using the
following statement:

$<var> = <string>

. Where var is a variable containing the address at which the string is to be
stored, and string is the string itself. This will write the characters in the
string into consecutive bytes of memory followed by a terminating carriage
return (ASCII 13). For example:

DIM buffer 256
$buffer = "This string is stored in memory at buffer"

It is worth remembering that literal strings can also be stored in memory
using the EQUS directive (see Chapter 13). Preceding this by a label defini-

252

•

•
~ · •

• l

Manipulating Strings

tion will set the label to the string start address, which can then be loaded
into a register using the ADR instruction.

/"\ String Manipulation Routines

r
a ,,

Each of the various string manipulation templates is in fact presented with
in a complete program, illustrating how it can be used. The section of code
which constitutes the template is marked within the program. The remain
ing instructions and statements are required only to illustrate the use of the
template. ·

Some registers must always be set up to hold the parameters needed by the
various string manipulation routines. The addresses where the strings are
stored, for example, must be placed in the appropriate registers. Only after
these registers have been set up, can the template be executed. This applies
to the usage of all the templates. In the example programs, the template
parameters are usually passed from BASIC to the appropriate registers
using the corresponding integer variables. (For details of passing data to
machine code routines, see Chapter Four.)

It is important to note that none of the routines validate the parameters
passed to them. For example, if we ask for a string to be concatenated on
to the end of another, then the routine will do it even if this creates a string
which is too long for the space allocated, and overwrites other data. It is
up to you to include checks on any parameters which could be invalid.

String Assignment

One of the simplest operations we can perform on a string is that of
assignment. In our scheme, to assign the contents of one string to another,
we simply copy the characters it contains to the memory area allocated to
the new string.

Listing 21.1 does exactly this. Characters are accessed sequentially from
the first string and stored in the memory area allocated to the second
string. Note that the memory load and store instructions are used in byte
mode to transfer individual characters. Also, post-index addressing with
automatic write back is specified. This increments the addresses being used
after each character is copied, so that they always point to the next
character along.

253

Archimedes Assembly Language

The addresses of the source and destination string are assumed to be in the
two registers called 'strl' and 'str2'. The destination string is the area of
memory which is to contain the copy of the original string. Its previous con
tents are unimportant as they are overwritten.

Listing 21.1. String assignment.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

254

REM Example of the string copy template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM copy 256

REM define
strl 0
str2 1
char = 3

names for the registers used
REM Source string addr passed in this register
REM Destination string addr in this register

P% = copy
[

The addresses of the two strings are passed into
registers strl and str2 from BASIC using A% and B%

********* String Copy Template ********

.copy loop
LDRB char, [strl],#1
STRB char, [str2],#l
CMP char, #13
BNE copy_loop

Loop to copy characters
Get next character from string 1
Store in next space in string 2
Check for end of string marker
If not got to end, then branch back

; ********* Template ends *********

MOV PC,Rl4 ; Back to BASIC
l

REM Reserve space for strings and put addresses in A%,B%
DIM stringl 100
DIM string2 100
A%= stringl
B%= string2

REPEAT
INPUT LINE ' "Enter the string to be copied : " $stringl
CALL copy
PRINT "Destination string contains $string2
UNTIL FALSE

\ •

1

• •

' r-\

,
l ,\

Manipulating Strings

String Concatenation

Listing 21.2 allows one string to be concatenated onto the end of another.
This is equivalent to the BASIC statement:

A$ = A$ + B$

The routine works by copying characters from the source string, but this
time it copies them on to the end of the destination string. Once again, the
addresses of the two strings are assumed to be in registers 'strl' and 'str2'.

Listing 21.2. String concatenation.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

REM Example of the string concatenation template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM concat 256

REM
strl
str2
char

Define
0

= l
= 3

P% = concat
[

names for registers used
REM Addr of string 1 passed in this register
REM Addr of string 2 passed in this register

The addresses of the two strings are passed into
registers strl and str2 from BASIC using A% and B%

********* String Concatenation Template ********

.find end Loop to find end of first string
LDRB char, [strl],#1
CMP char, #13
BNE find end

Get next character from the string
Have we reached end of string marker
If not then keep looking

SUB strl~strl,#1

.copy loop
LDRB char, [str2],#l
STRB char, [strl), #1
CMP char, #13
BNE copy_loop

Move pointer back to end of string

Loop: string 2 on end of string 1
Get next character from string 2
Store char in next space in string 1
Has end of string 1 been reached
If not then keep copying

; ********* Template ends *********

MOV PC,Rl4 Back to BASIC
l

REM Reserve string space and place addresses in A%,B%

255

Archimedes Assembly Language

380 DIM stringl 100
390 DIM string2 100
400 A%= stringl
410 B%= string2
420
430 REPEAT
440 INPUT LINE '"Enter the first string :" $stringl
450 INPUT LINE "Enter string to be added :" $string2
460
470 CALL concat
480
490 PRINT ' "Concatenating string 1 onto string 2"
500 PRINT "Result is : " $stringl
510 UNTIL FALSE

String Comparison

There are occasions when we want to perform comparison operations on
strings. In BASIC we can write statements like:

IF name1$ > name2$ THEN PROCswap

This compares the two strings on the basis of the ASCII codes of the charac
ters they contain.

The template to perform this is presented in listing 21.3. By way of an ex
ample, the program allows two strings to be entered, compares them using
the routine, then outputs the result of the comparison.

The routine works by successively comparing the ASCII codes of each
character pair from the two strings. Special care has to be taken when one
string terminates before the other.

Listing 21.3. String comparison.

10
20
30
40
50
60
70
80
90

100
110
120

256

REM Example of the string comparison template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM compare 256

REM Define
result 0
strl 1
str2 2
charl 3

names for registers used
REM Result of comparison returned here
REM Addr of string 1 passed in this register

: REM Addr of string 2 passed in this register

• '

1

' t\

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

AAL-Q

Manipulating Strings

char2 4

FOR pass =O TO 3 STEP 3
P% = compare
[
OPT pass

The addresses of the two strings are passed into
registers strl and str2 from BASIC using A% and B%
Result returned in RO and passed back to BASIC via 'USR'

********* String Comparison Template ********

MOV result,#0
.comp chars
LDRB -charl, [strl],#1
LDRB char2, [str2] , #1
CMP charl,char2

Initially no comparison result
Loop to compare characters
Get next character from string 1
Get next character from string 2
Compare the two characters

MOVGT result,#1 If
MOVLT result,#2 If
BNE done If
CMP charl, #13 ; If

charl > char2 THEN stringl > string2
charl < char2 THEN string2 > stringl
charl<>char2 comparison complete
end string 1 then string2 > stringl

ADDEQ result,result,#2
CMP char2,#13 ; If end string 2 then stringl > string2
ADDEQ result,result,#1
CMP result,#0
BEQ comp chars

See if comparison produced a result
If not, then keep comparing

.done -

; ********* Template ends *********

MOV PC,R14
l
NEXT pass

; Back to BASIC

REM Reserve space for strings and put addresses in A%,B%
DIM stringl 100
DIM string2 100
B%= stringl
C%= string2

REPEAT
INPUT LINE I "Enter the first string : "
INPUT LINE "Enter the second string :"

Result = USR(compare)

result of comparison

$stringl
$string2

REM Display
IF Result
IF Result
IF Result

1 THEN PRINT $stringl " > " $string2
2 THEN PRINT $string2 " > " $stringl
3 THEN PRINT $stringl " " $string2

UNTIL FALSE

257

Archimedes Assembly Language

LENO

The LEN() function returns the current string length. The template for this
operates by counting characters in the string until the end of string marker
(character 13) is reached. The string length template is contained in listing
21.4. As an example of its use, the program prompts for a string to be en
tered, calls the LEN routine and then prints out the string length.

Listing 21.4. String length (LEN).

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

258

REM Example of the LEN template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM len 256

REM Define
length 0

names for the registers used
REM String length returned in this register

str 1 : REM Address of string passed in this register
char 3

P% = len
[

Addr of strings passed to 'str' from BASIC via A%
String len returned in RO and passed to BASIC via 'USR'

********* String Length Template ********

MOV length,#0
.find end
LDRB char, [str),#1
CMP char,#13
ADDNE length,length,#1
BNE find end

. ********* ,

MOV PC,R14
l

Template ends

Initialise length
Loop to count characters
Get next char from string
Is it end of string marker
If not increment length count
If not string end keep going

; Back to BASIC

REM Reserve space for the string and put address in A%
DIM string 100
B%= string

REPEAT
INPUT LINE ' "Enter the string ·"
PRINT "Length of the string is :";
UNTIL FALSE

$string
USR(len)

t
'

Manipulating Strings

LEFT$

Listing 21.5 emulates BASIC's LEFT$ function. It is passed a string and a
number, n. It then returns a string consisting of the n left-most characters
of the source string. n must be in the range 0 <= n <= LEN(string). If n = 0,
an empty string is returned.

The routine works by copying n characters from the start of the source
string. It terminates by adding character 13 to form a valid string.

Listing 21.5. LEFT$ template.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

REM Example of the LEFT$ template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM left 256

REM Define names for the registers used
strl 0 reg
str2 1
n 2

REM Source string addr passed in this
REM Destination string addr passed in

: REM Contains 'number of characters to
this reg
copy'

char 3
count 4

P% = left
[

Addr of the two strings passed to registers strl,str2 from
BASIC via A%,B%. No. of chars to copy passed via C% to 'n'

********* LEFT$ Template ********

MOV count,#0
.copy loop
CMP count,n

LDRNEB
STRNEB
ADD NE
BNE

MOV
STRB

char, [strl],#1
char, [str2], n
count,count,#1
copy_loop

char,#13
char, [str2]

Initialise count
Loop to copy characters
See if all characters copied
IF NOT all copied THEN
Get next character
Store char in destination string
Inc 'characters copied' counter
Branch and process next character
ENDIF
Terminate the destination string
with the end of string marker

; ********* Template ends *********

MOV PC,R14 ; Back to BASIC

259

Archimedes Assembly Language

380
390
400 REM Reserve space for strings and put addresses in A%,B%
410 DIM stringl 100
420 DIM string2 100
430 A%= stringl
440 B%= string2
450
460 REPEAT
470 INPUT ' "Enter the string :" $stringl
480 INPUT "Enter number of characters :",num
490 C% = num : REM prepare to pass num, via C%, into routine
500
510 CALL left
520
530 PRINT "Resulting string ·" $string2
540 UNTIL FALSE

RIGHT$

Listing 21.6 emulates BASIC's RIGHT$ function. It is passed a string and a
number, n. It returns the n right-most characters of the source string. The
value of n must be in the range 0 <= n <= LEN(string). If n = 0, an empty str
ing is then returned.

This routine works in the same way as LEFT$, however, this time characters
must be taken from the end of the source string. This is done by finding the
end of the string marker first, then counting back the required number
of characters.

Listing 21.6. RIGHT$ template.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160

260

REM Example of the RIGHT$ template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM right 256

REM Define
strl 0
str2 1
n 2
char 3
count 4

P% = right
[

names for registers used
REM Source string addr passed in this reg
REM Destination string addr passed in this reg
REM Number of chars to be copied

r

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

Manipulating Strings

;Addrs of 2 strings passed to strl,str2 from BASIC via A%,B%
Number of chars to be copied passed to register 'n' via C%

********* RIGHT$ Template ********

.find end
LDRB char, [strl],#1
CMP char,#13
BNE find end

.copy characters
LDRB char, [strl,#-1] !
STRB char, [str2,n]
SUBS n,n,#1
BPL copy_characters

Loop to find end of string
Get next character
Is it the end of string marker
If not then keep looking

Loop to copy characters
Get next character from the right
store char in destination string
Dec 'characters copied' counter
If chars still to be copied, branch

; ********* Template ends *********

MOV PC,Rl4 ; Back to BASIC

REM Reserve space for the strings and put addresses in A%,B%
DIM stringl 100
DIM string2 100
A%= stringl
B%= string2

REPEAT
INPUT ' "Enter the string :" $stringl
INPUT "Enter number of characters :",num
C% = num REM prepare to pass num to routine via C%

CALL right

PRINT "Resulting string :" $string2
UNTIL FALSE

MID$

The MID$ function is used to extract characters from the middle of a string.
It is passed a string and two numbers, p and n. It will then return n charac
ters from the string, starting at position p. The template to do this is pre
sented in listing 21.7. Note that p and n must be chosen, so that there are n
characters in the source string starting at position p, ie, p+n <= LEN(string)

The routine is similar to the LEFT$ template, except that copying takes place
starting at the position denoted by p.

261

Archimedes Assembly Language

Listing 21.7. MID$ template.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

262

REM Example of the MID$ template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM mid 256

REM Define names for registers used
strl 0 REM Source string addr passed in this reg
str2 1 REM Destination string addr passed in this reg
n 2 REM Contains number of characters to be copied
p 3 REM Contains the position to start copying from
char 4
count 5

P% = mid
[

Addresses of two strings passed into strl,str2 from BASIC
via A%,B%. Number of characters to be copied passed to
register n via C%. Start position passed to reg p via D%

********* MID$ Template ********

MOV
ADD
CMP
SUBNE

count,#0
strl,strl,p
p,#0
strl,strl,#1

.copy loop
CMP - count,n

LDRNEB
STRNEB
ADDNE
BNE

MOV
STRB

char, [strl], #1
char, [str2], #1
count,count,#1
copy_loop

char, #13
char, [str2]

Initialise count
Add start position to string addr
correct for '0' positions !!

Loop to copy characters
Have all chars have been copied
IF not all copied THEN
Get next character
Store char in destination string
Inc 'characters copied' count
Branch to process next char
ENDIF
Terminate the destination string
with end of string marker

; ********* Template ends *********

MOV PC,R14 ; Back to BASIC

REM Reserve space for strings and put addresses in A%,B%
DIM stringl 100
DIM string2 100
A%= stringl

\'

1

' '

Manipulating Strings

510 B%= string2
520
530 REPEAT
540 INPUT ' "Enter the string :" $stringl
550 INPUT "Enter start position" , pos
560 INPUT "Enter number of characters :",num
570 C% = num : REM prepare to pass num to routine via C%
580 D% = pos : REM prepare to pass pos to routine via D%
590
600 CALL mid
601
610 PRINT "Resulting string : " $string2
620 UNTIL FALSE

INSTR

INSTR takes two strings and attempts to find the position of the second
string in the first. If it succeeds, the position of the second string is
returned. If the string could not be found, 0 is returned. A number is also
given, p, which signifies the position in the first string from which the
search should begin. P must be in the range 0 < p <= LEN(string).

A template for INSTR is given in listing 21.8. The routine works by using two
nested loops. The outer loop moves through each character in the source
string. Starting from each of these position, the inner loop compares char
acters with the search string to see if they are the same. If all the characters
in the search string are successfully matched, the string has been found and
its start position is returned. However, as soon as two characters are
found to be different, the comparison fails. The inner loop terminates and
the outer loop moves to the next position.

Listing 21.8. INSTR template.

10
20
30
40
50
60
70
80
90

100
110
120
130
140

REM Example of the INSTR template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM instr

REM Define
count 0
strl 1
str2 2
n 3
ptrl 4
ptr2 5

256

names for registers used
REM Used to return result of INSTR
REM Source string addr passed in this reg
REM Destination string addr passed in this
REM Contains the start position for INSTR

reg

263

Archimedes Assembly Language:

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
3 30
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670

264

charl 6
char2 7

FOR pass = 0. TO 3 STEP 3
P% = instr
[
OPT pass

Addrs of two strings passed to registers strl,str2 from
BASIC via B%,C%. Start position passed to reg n via D%.
Result returned in RO and passed back to BASIC via 'USR'

********* INSTR Template ********

CMP
SUBNE
MOV
ADD

n,#0
n,n,tl
count,n
strl,strl,n

.compare strings
MOV ptrl,strl
MOV ptr2,str2

ADD count,count,#1

.compare chars
LDRB charl, [ptrlJ,tl
LDRB char2, [ptr2J,tl
CMP char2, #13
BEQ found it
CMP charl~char2
BEQ compare_chars

LDRB
CMP
BNE

charl, [strl], #1
charl, #13
compare_strings

MOV count,#0
.found it

Correct for '0' start position !!

Initialise count
Add start position to string addr

Loop: compare strings at strl,str2
Make working copies of strl,str2

Inc 'current position' count

Loop: compare chars in strings
Get character from string 1
Get character from string 2
Has string 2 has been completed
If so, it was found in string 1
Compare next two characters
If same, compare next two chars

Get char from stringl, inc'ing strl
See if stringl has ended
If not, compare strings at new strl

String 2 not found so return '0'

; ********* Template ends *********

MOV PC,Rl4
l
NEXT

REM Reserve
DIM stringl
DIM string2
B%= stringl
C%= string2

REPEAT

space for strings and put addresses in B%,C%
100
100

,
J

l

680
690
700
710
720
730
740
750

INPUT ' "Enter the string :" $stringl
INPUT "Enter substring :" $string2
INPUT "Enter start position :",pos

Manipulating Strings

D% = pos : REM Prepare to pass pos to routine via D%

PRINT "Result USR (instr) ;

UNTIL FALSE

STRING$

String$ is used to create a new string by concatenating multiple copies of
another string together. It takes the string to be copied and a number, n,
which is the number of copies to be made. It returns a string consisting of
'n' copies of the original string.

The template to implement this is given in listing 21.9. It consists of two
nested loops. The inner loop makes a copy of the source string on the end of
the destination string. The outer loop repeats this to create the required
number of copies.

Listing 21.9. STRING$ template.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM Example of the STRING$ template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM replicate 256

REM Define names for registers used
strl 0 REM Source string addr passed in this reg
str2 1 REM Destination string addr passed in this reg
count 2 : REM No of copies to be made passed in this reg
ptr 3
char 4

FOR pass = 0 TO 3 STEP 3
P% = replicate
[
OPT pass

Addresses of two strings passed to strl,str2 via A% and 8%
No. of copies of string is passed to reg 'count' via C%

********* STRING$ Template ********

.rep_string ; Loop to copy string 'n' times

265

Archimedes Assembly Language

CMP
BEQ
SUB
MOV

count,#0
finish
count,count,#1
ptr,strl

.copy string
LDRB - char, [ptr],#1
CMP char, #13

STRNEB char, [str2],#1
BNE copy_string

rep_string

.finish
MOV char, #13
STRB char, [str2]

See if enough copies made
If so then branch to end
Dec 'number of copies' counter
Copy start of string pointer

Loop to characters in string
Get next char from source string
See if the end of string marker
IF NOT end of string marker THEN
Store char in destination string
Branch to process next character
ENDIF
Branch to copy string again

; Terminate the destination string
; with end of string marker

; ********* Template ends *********

MOV PC,R14

l
NEXT

; Back to BASIC

260
270
280
290
300
310
320
330
340
350
360
370
380 B
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

REM Reserve
DIM stringl
DIM string2
A%= stringl
B%= string2

space for strings and put addresses in A%,B%
100
100

REPEAT
INPUT LINE ' "Enter the first string :"
INPUT LINE "Number of repeats :" num

C% = num
CALL replicate

PRINT "Result is
UNTIL FALSE

VAL()

"$string2

$stringl

The v AL function interprets a string of characters as a sequence of numeric
digits. It attempts to evaluate the number represented by these and, if it
succeeds, returns the number.

The template to do this in machine code is given in listing 21.10. It uses an
operating system SWI routine to perform the conversion. This routine,

266

I
'-"'

Manipulating Strings

however, can only deal with positive numbers. The template, therefore,
contains some pre-processing code to check to see if a minus or plus sign
precedes the numeric string. If this is the case, the sign of the number is
noted and an unsigned string is passed to the SWI routine. After the
conversion, the resulting number's sign is modified accordingly.

The string of digits can be prefixed by an optional code which specifies the
base in which the number is given. This is done as follows:

<base> <number>

The base is a number specifying the number base and can range from two
to 36. For example, the following are all legal strings for processing by the
v AL template:

2_11101010001
-2_10101010010
16_FFEE
&FFEE

-8_777
20_10G

Base 2
Base 2
Base 16
Base 16
Base 8
Base 20

(binary)
(binary negative number)
(hexadecimal)
(alternative for hexadecimal)
(octal negative number)

Listing 21.10. VAL template.

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240

REM Example of the VAL template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM val 256

names for registers used REM Define
str 1
result 2

REM Address of string passed in this register
: REM Numeric result returned in this register

neg 3
char 4

P% = val
[

The address of the string is passed into str via B%
The result of the conversion is produced in register R2

********* VAL template

MOV neg,#0
.skip spaces
LDRB -char, [str],#1
CMP char,#32

Initialise negative flag
Loop: skip leading spaces
Get next character from string
See if it is a space

267

Archimedes Assembly Language

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

BEQ

CMP
MOVEQ
CMPNE
SUBNE

MOV
SWI

skip_spaces

char,#ASC("-")
neg,#1
char, #ASC ("+")
str,str,#1

RO, #10
"OS_ReadUnsigned"

CMP neg,#1
RSBEQ result,result,#0

; ********* Template ends

MOV RO, result
MOV PC,Rl4
l

If so branch to get next char

Is first non space char a '-'
If so set the negative flag
If not '-' then see if it is '+'
If NOT '-' or '+' go back a char

Base is 10 - may be any from 2-36
Call SWI to convert number

See if the negative flag is set
If so, make result negative

Result in RO, return with 'USR'
Back to BASIC

REM Reserve space for the string and put address in B%
DIM string 100
B%= string

REPEAT
INPUT LINE ' "Enter the string :" $string
PRINT "VAL of string is :" USR(val)
UNTIL FALSE

STR$

The STR routine performs the reverse operation to VAL. It takes an integer,
n, and returns a string of numeric digits which represent n. If n is negative,
the returned string will contain a minus sign as its first character. The tem
plate to perform STR$ is given in listing 21.11. It relies on a SWI call to per
form the conversion.

Listing 21.11. STR$ template.

10
20
30
40
50
60
70
80
90

100
110

268

REM Example of the STR$ template
REM (c) Michael Ginns 1987
REM DABS Press : Archimedes Assembly Language
REM

DIM ConvertStr 256

REM Define
number 0
str 1
char 4

names for registers
REM Used to pass no. for conversion (RO)

: REM Address of string passed in this register

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

Manipulating Strings

P% = ConvertStr
[

Address of the string passed to Rl via B%
Number to be converted passed to RO vi A%

********* STR$ Template ********

MOV R2, UOO
SWI "OS BinaryToDecimal"
MOV char, U3
STRB char, [R2,str)

; ********* Template ends

MOV PC,R14
l

Size of string buffer
Call convertion SWI
Terminate string by adding
end of string marker

; Back to BASIC

REM Reserve space for string and put address in B%
DIM string 100
B%= string

REPEAT
INPUT "Enter number to be converted : " A%

CALL ConvertStr

PRINT "String produced is
UNTIL FALSE

" $string

269

22 · Functions, Operators ...

This chapter contains templates for some miscellaneous BASIC statements.
The first group are BASIC functions and operators. After these, the subject
of implementing arrays in machine code is considered. Finally, we will take
a brief look at making sound effects from machine code programs.

SGN

The BASIC SGN function takes one argument and returns a number indicat
ing the sign of the argument in the following way:

-1 If argument is < 0
0 If argument is = 0
1 If argument is > 0

This is implemented very simply in assembly code as follows:

[
CMP number,#0
MOVEQ result,#0
MOVGE result,#1
MVNLT result,#0
l

Compare the argument with zero
If 0 MOVE '0' into result
If> 0 MOVE '+1' into result
If< 0 MOVE '-1' into result

On entry to the routine, the argument should be placed into the register
called number. On exit, the sign of the number (using the convention
illustrated above) will be in the result register.

ABS

The ABS function complements SGN as it returns the magnitude of its argu
ment while ignoring its sign. Put another way, ABS checks to see if the argu
ment is negative and, if so, alters its sign to be positive. Again this is very
simple to implement in assembly code as follows:

270

-~ ·

Functions, Operators, Arrays and Sound

[
MOVS result,nui:nber Move number to result registe r
RSBMI result,number,#0 If <0 then make positive
l

The argument is assumed to be contained in the register called 'number'.
The routine initially performs result= number. It then checks to see if the
result was negative and, if it is, executes result = 0 - result. This effectively
reverses the sign, making the negative value positive again.

DIV and MOD

The DIV and MOD functions both perform integer division of two numbers.
MOD returns the remainder of the division, and DIV returns the quotient.

We can produce a single assembly routine which will divide one 32-bit
number by another and produce both quotient and remainder. Listing 22.1
does exactly this. It assumes that the two numbers to be used have been
placed in registers 'number' and 'divisor'. It then performs 'number' divi
ded by 'divisor'. The quotient and remainder of the result are placed in re
gisters called 'quotient' and 'remainder'.

quotient = number DIV divisor
remainder = number MOD divisor

The routine consists of three main parts. The actual division is carried out
by the program loop. This, however, can only deal with the division of
positive integers. For this reason, the first program block stores the sign of
each operand in turn, and then makes them positive. After the division
occurs, the third program block corrects the results utilising the signs of the
original numbers.

Listing 22.1. Template to perform DIV and MOD operations.

10 REM Example of DIV and MOD templates
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM divide 256
70
80 REM Define names for registers used
90 number 0

100 divisor 1
110 remain 2
120 quotient 3

271

Archimedes Assembly Language

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

272

place 4
dsign 5
msign 6

FOR pass 0 TO 3 STEP 3
P%=divide
[
OPT pass

Division operands assumed to be present in registers:
'number' and 'divisor'

In this example they are passed from BASIC via A% and B%

ANDS
RS BM I
EOR
CMP
RS BM I

msign,number,#1<<31
number,number,#0
dsign,msign,divisor
divisor,#0
divisor,divisor,#0

MOV remain,#0
MOV quotient,#0
MOV place,#1<<31

Produce sign of remainder
If negative, make positive
Produce sign of quotient
Check sign of divisor
If negative, make positive

Initialise remainder
Initialise quotient
Initialise place counter

.division loop Loop to process all 32 bits
MOVS number,number,ASL#l Shift 1 place left and shift
ADC remain,remain,remain bit 31 into the remainder
CMP remain,divisor Is remainder > divisor
SUBGE remain,remain,divisor ; If so do remainder-divisor
ORRGE quotient,quotient,place ; and set appropriate bit
MOVS place,place,LSR#l ; Move place counter 1 bit left
BNE division_loop ; If all 32 bits not processed branch

CMP dsign,#0
RSBMI quotient,quotient,#0
CMP msign,#0
RSBMI remain,remain,#0

STR quotient,divres
STR remain,modres

MOV PC,R14

.divres
EQUD 0
.modres
EQUD 0
l
NEXT

REPEAT
PRINT '

Should quotient sign be neg
If so, make quotient negative
Should remainder be negative
If so, make remainder negative

Store results for BASIC to read

Back to BASIC

Space for DIV and MOD results

INPUT "Number to be divided (dividend) ·" A%

, ,
•

Functions, Operators, Arrays and Sound

650 INPUT "Number to divide by (divisor) :" B%
660 CALL divide
670 PRINT ;A%; .. DIV "; B%; .. "!divres
680 PRINT ;A%; .. MOD "; B%; .. "!modres
690 UNTIL FALSE

r Logical Operators: AND, OR, EOR

I r'\

The use of AND and OR as a logical statement is dealt with in the template
for the IF statement. Here, we consider the use of AND, OR and EOR as bit
wise operators. In BASIC we can write statements like:

result operandl AND operand2
result = operandl OR operand2
result = operandl EOR operand2

In assembly language we can perform the equivalent of these statements by
using the following:

[
AND result,operandl,operand2
ORR result,operandl,operand2
EOR result,operandl,operand2
l

These statements perform the appropriate logical operation on operands
one and two and place the result in the 'result' register. Full details of logi
cal operators is given in Appendix C.

Logical Operator: NOT

The final logical operator provided by BASIC is the NOT function. This func
tion takes a single argument and inverts all the bits in it to produce a result.
For example:

result = NOT operand

This can be implemented in machine code easily using the processor's
MVN instruction:

AAL-R

[
MVN result,operand
l

273

Archimedes Assembly Language

Arrays

The ARM processor provides excellent support for the handling of arrays. /""'\
Here we shall only consider the implementation of one-dimensional
integer arrays.

Dimensioning Arrays

Before an array can be used in BASIC, it must be dimensioned. This is done
for two reasons. First, it allows BASIC to claim enough total memory to
store the array's elements. Second, it informs BASIC of the individual
dimension sizes of the array. This then allows it to check that subscripts
used in future references to the array are legal. In our assembly language ~
equivalent, we will not provide any automatic range checking of subscripts.
Instead, it is left to the program using the array to make sure that it only
accesses legal array elements. ~

In assembly code, therefore, the problem of dimensioning the array be-
comes the problem of reserving enough memory to hold the array. To store
an 'n' element array we will require:

n *e bytes

Where 'n' is the number of elements and 'e' is the number of bytes required
to store one array element. For example, suppose we want to reserve
enough memory for an array defined as:

DIM freddy% (99)

This in fact creates a 100-element array (zero to 99) in which each element
requires four bytes to store it. To store the complete array, therefore, we
require the following:

100*4 bytes

The memory for an array can be reserved using the standard DIM<size>
statement from BASIC. Alternatively, it can be reserved from within assem
bler by calling a user-defined function. This would take the number of bytes
to be reserved as a parameter, and would increment P% by that amount.
An example of this technique is given in listing 22.2.

274

r'\
t

'

Functions, Operators, Arrays and Sound

Array Access

We now come to the problem of array access. The instructions to access
memory are STR and LDR. These are fully described in Chapter 10. We shall
use the pre-indexed form of addressing to access our arrays. In this mode,
we can specify two addressing registers in an instruction, the contents of
which are added together to give the address in memory of the accessed
data. We shall use one register, called 'base', to contain the start address of
our array. The other register, called 'index', will contain the number of the
particular element we are accessing.

In an array of integers, each element will occupy one complete word (four
bytes). To access the nth element, therefore, we must multiply the index by
four before using it to access the data. This can be done within the instruc
tion itself by specifying a two-place logical shift left of the index register.
For example:

LOR destination, [base,index,LSL#2]

As an example of array access, listing 22.2 arbitrarily stores the numbers
200 to 300 consecutively in each of the 100 elements of an integer array. As
it performs this action, it calls a 'print out' routine to display the operation
being performed.

After waiting for a key to be pressed, the program then adds together all
the numbers in the array - the equivalent of BASIC's SUM statement.
Finally, the calculated total is displayed.

Listing 22.2. Array access in machine code.

10 REM Example of the Array Access
20 REM (c) Michael Ginns 1983
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM array_sum 1024
70
80 REM Define names for registers used
90 base 5

100 index 6
110 data = 7
120 total = 8
130
140 FOR fass = 0 TO 3 STEP 3
150 P% = array_sum

275

Archimedes Assembly Language

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

276

[
OPT pass

MOV
ADR
MOV
MOV

R10,R14
base,freddy
index,#0
data,#200

.loopl

Preserve link register
Initialise base address of array
Initialise array index
Initial data value = 200

STR data, [base,index,LSL#2]
; Loop to store data in array
; Store data in array(index)

SWI "OS Writes"
EQUS "freddy ("
EQUB 0

; Output diagnostic data

MOV RO, index
BL print it
SWI "OS Writes"
EQUS ")
EQUB 0
MOV RO,data
BL print it
SWI "OS NewLine"

ADD
ADD
CMP
BLE

data,data,#1
index,index,#1
index,#99
loopl

Increment data value
Increment array index
See if all elements accessed
If not then loop back

Wait for a key to be pressed

SWI "OS Writes"
EQUS "Press any
EQUB 0

key to calculate SUM of the array:"

SWI "OS ReadC"
SWI "OS-NewLine"

MOV total,#0
MOV index,#0

Calculate SUM the array
Initialise SUM total
Initialise array index

. loop2 loop to
LDR data, [base,index,LSL#2]
ADD total,total,data
ADD index,index,#1
CMP index,#99
BLE loop2

MOV RO, total
BL print_it

MOV PC,RlO; Back to BASIC

sum elements of array
Access data in array(index)
Add the data to the total
Increment the array index
Are all elements done
If not then loop back

Print out the total

" 1

690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020

Functions, Operators, Arrays and Sound

; Subroutine to print, in decimal, the number in RO
.print it
ADR RT, string buffer
MOV R2, *32 -
SW! "OS BinaryToDecimal"
MOV RO, JO
STRB RO, [Rl,R2]
ADR RO, string buffer
SW! "OS WriteO"
MOV PC,Rl4

; Reserve space for the array
.freddy
FN_work(100*4)

; Reserve space for a string buffer
.string buffer
EQUS STRING$(32,CHR$(0))

l
NEXT

CLS
PRINT "Press any key to start"
pause = GET
CALL array sum
PRINT -
END

REM Function used to reserve space from the assembler
DEF FN work(number of bytes)
P% = P% + number_of_bytes
= pass

SOUND

The full sound system on the Archimedes is very different to that on the BBC

micro. There is a full stereo wave synthesis system which can produce
.\ speech, sound effects, and play back sound samples.

The routines to control all this, therefore, are very complex and are beyond
~ the scope of this book. However, on an extremely simple level, we can still

make some use of the sound system.

The simplest equivalent of the BASIC SOUND command is an SWI call named
~ "SoundControl". This is entered with the following parameters set up in

registers RO to R4:

277

Archimedes Assembly Language

RO:
Rl:
R2:
R3:

Channel number for sound
Amplitude -15 Ooudest) to zero (quietest)
Pitch
Duration

Listing 22.3 will produce a sound on channel one with a volume of -15, a
pitch of 200 and a duration of 50.

Listing 22.3. Simple sound effects.

10
20
30
40
50
60
80
90

100
llO
120
130
140
150
160
170
180
190

278

REM Simple SOUND template
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM sound 256
P% = sound
[

MOV RO,U
MOV Rl,U5
RSB Rl, Rl, JIO
MOV R2, Jl200
MOV R3,Jl50
SWI "Sound Control"

MOV PC,Rl4
l
CALL sound

Channel 1
+15 volume
Make Rl negative (-15)
Pitch 200
Duration 50
Use SWI routine to make sound

Back to BASIC

·\

23 · Control Statements

Almost every computer program requires some use of control statements.
These statements are used to make execution conditional on data, to im
plement loops and to select routes through multi-path code.

It is essential, therefore, that we can create equivalents to these high-level
control statements in our assembly code programs. In this chapter we will
consider how this may be done for each of BASIC's control statements.

~ For each control statement, a template is developed which will mimic its
a operation in assembly. The templates do not constitute complete

programs. They do not even form complete assembly code routines to use
~ within programs. Instead, they are skeletons which provide us with

outlines for control statements.

For example, when developing an IF ... THEN ... ELSE template, it will depend
on the application as to which condition is tested and what actions are ta
ken by the THEN and ELSE clauses. Such a template is, therefore, given as a
series of instructions which are general to all IF ... THEN ... ELSE statements
with gaps left for the application specific instructions.

IF ... THEN ... ELSE ... ENDIF

The complete block IF statement in BASIC is as follows:

IF <condition> THEN
<statement l >

ELSE
<statement 2>

END IF

This can be implemented in assembly code using the CMP instruction and
suitable branches. The general outline template for IF is shown in figure
23.1 on the next page.

The CMP instruction compares the two operands and sets various status re
gister flags to indicate the results. If the comparison executes the first

279

Archimedes Assembly Language

branch, the processor will jump to the series of instructions which make up
<statement l>, (the THEN clause).

However, if the comparison results in the first branch not being taken, the
instructions forming <statement> 2 will be executed, (the ELSE clause).
After these instructions have been completed the unconditional branch will
jump to the end of the construction, labelled by endif.

In this way we have two alternative execution paths depending on the
result of a comparison, which is exactly what we want for a conditional
statement like this.

CMP regl, reg2
B<conditional suffix> then

B endif

.then

.endif
l

<statement 2>

<statement 1>

Figure 23.1. Outline IF ... THEN ... ELSE template.

Note that the two operands for the IF statement test are assumed to be
contained in registers regl and reg2. Obviously, this need not be the case,
and the operands may need loading into the registers before executing the
IF statement.

You will also have noticed that the first branch instruction is incomplete.
We have not specified the conditional suffix to be used. For example, NE,
EQ, GT, LT, and so on. This is deliberate as the suffix will depend on the com
parison being made in the IF statement. For example, we could have:

IF A=B THEN
IF A>B THEN
IF A<=B THEN

We want the branch to be executed only when the appropriate relationship
is true. The CMP instruction actually compares the two operands, but it is

280

Control Statements

the branch instruction's suffix which defines which relationship is true for
the branch to be taken.

We are fortunate in that the ARM processor provides conditional suffixes
to cover all the types of logical relations between two operands. To save
having to work out how condition flags are set and which suffix should be
used, look at the table in figure 23.2. This lists all the relationships between
two operands which we may want to test for. With each it gives the corre
sponding conditional suffix to use with the branch instruction. It is
assumed that the comparison CMP A,B has been made previously.

Condition Suffix used Suffix for reverse
of condition
A=B EQ NE
A<>B NE IQ
A>B GT IE
A>=B GE LT
A<B LT GE
A<=B LE GT

Figure 23.2. Condition code for all possible logical comparisons.

An example should help to clarify things! Suppose we want to implement
the following BASIC statements in assembler:

A = GET
IF A <65 THEN VDU 7 ELSE VDU A

This will accept a character from the keyboard. It will beep if the character
is less than 65, ie, a numeric character. Otherwise, the character is printed

~ out. The assembler equivalent using the IF template is given in listing 23.1.

Listing 23.1. Example of using the IF ... THEN template.

10 REM Example of the 'IF ... THEN ... ELSE' template
20 REM (c) Michael Ginns 1988
30 REM Dabs Press : Archimedes Assembly Language
40 REM
50
60 DIM conditional 256
70
80 REM Define register names and constants
90 char = 0

100 vdu = 256
110 beep = 7

281

Archimedes Assembly Language

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

FOR pass = 0 TO 3
P%= conditional
[
OPT pass

SW! "OS ReadC"

CMP char,#65
BLT then

SW! "OS WriteC"
B endif

.then
SW! vdu+beep

.endif

MOV PC,R14
l
NEXT pass

char = GET

Compare char with 65
IF char < 65 branch to THEN clause

ELSE output char
branch to end

THEN clause
VDU 7

End of statement

Back to BASIC

PRINT 11 "Type characters now!" '
REPEAT
CALL conditional
UNTIL FALSE

Multi-condition IF ... THEN ... ELSE Statements

A further modification of the simple IF statement is the inclusion of several
conditions linked together by OR and AND. This too can be implemented in
assembler language by modifying the general template.

OR

The OR condition can be implemented simply by adding extra compare and
branch instructions after the first one. For example:

IF A<B OR C=D TH.EN <statement 1> ELSE <statement 2>

Assuming that the registers named A, B, C and D contain the appropriate
values, this can be implemented as:

282

•

.\

•

CMP A,B
BLT then
CMP C,D
BEQ then

B endif

.then

.endif
l

Control Statements

<statement 2>

<statement 1>

If the first condition isn't met, the first branch to the THEN clause fails.
However, instead of going to the ELSE clause as before, the second compar
ison is reached. If this comparison succeeds, we will still branch and exec
ute THEN. Only if both comparisons fail, will the instructions in the ELSE
clause be reached.

In this way statement 1 is executed if condition one is TRUE OR if condition
two is TRUE. This idea can be extended to include any number of extra con
ditions required.

AND

To implement logical AND is slightly more complicated. We must force the
processor to check several relationships and only execute the THEN clause
if all of them are TRUE. If a single comparison succeeds, we must not branch
immediately to THEN as the other conditions haven't been checked.

To solve the problem, we have to perform a certain amount of re
arranging of the original IF statement. Consider the statement:

IF A=l AND B=2 THEN <statement 1> ELSE <statement 2>

Statement one will be executed only if both of the relationships are TRUE,
otherwise statement two will be executed. Thinking of this another way,
statement two will be executed if either of the relationships are FALSE,
otherwise statement one will be executed. This may seem a pointless exer
cise, but it allows us to re-write the statement as:

IF A<>l OR B<>2 THEN <statement 2> ELSE <statement 1>

283

Archimedes Assembly Language

This is functionally identical to the first statement, but involves the OR
operation, which we have already implemented.

In general, therefore, to implement AND, we swap over statements one and
two in the template and reverse all of the conditions in the branch instruc
tions. Referring back to the table in figure 23.2, the final column gives the
suffix required to reverse the result of a condition. For example the oppo
site of BEQ (branch if equal) is BNE (branch if not equal).

Consider the following example:

IF A=B AND C<D THEN <statement 1> ELSE <statement 2>

This will be implemented in assembly code as:

CMP A,B
BNE else
CMP C,D
BGE else

Compare A and B
IF A<>B branch to else
Compare C and D
IF C>=D branch to else

THEN clause: reached only if A=B and C<D
<statement 1>

B endif Jump to end

.else Reached if either condition fails

<statement 2>

.endif

Non-numeric Comparisons

So far in all of the descriptions, we have assumed that the condition state
ments test numerical quantities. However, strings can also be tested. In
Chapter 21, a template routine was presented to compare to strings. This
returned a number which indicates the result of the comparison. We can,
therefore, call this routine from within the IF template and then use CMP to ,--..._
test the result returned from the comparison routine.

284

•

Control Statements

REPEAT ... UNTIL

The REPEAT ... UNTIL construction executes a series of statements UNTIL a
condition is satisfied. To implement this in assembly code, we use similar
ideas to those used with the IF statement. We set up a loop which includes a
comparison to determine when it should terminate.

For example, supposing we wanted to implement the following:

REPEAT
< statement >

UNTIL A=B

~ This would be done as follows:

.repeat

< statement >

CMP A,B
BNE repeat

In general, the conditional suffix used with the branch instruction will de
pend on the comparison made. It can again be selected using figure 23.2.

It is important to note that in the previous example, although the terminat
ing condition is UNTIL A=B, the branch instruction actually executes if
A<>B (BNE). This is because for the loop to be repeated, the comparison
must succeed and execute the branch. This is the opposite to the original RE
PEAT ... UNTIL statement which terminates when the comparison succeeds.

We must, therefore, reverse the original comparison used in the
REPEAT...UNTIL loop when writing our templates. This will automatically be
allowed for if we use the last column of figure 23.2 when looking up the
suffix for comparison.

/"'\ WHILE ... ENDWHILE

The WHILE loop is special in that the test is made at the beginning of each
~ loop and, if it fails the first time, the statements in the loop are skipped.

285

Archimedes Assembly Language

An example of a WHlLE loop is:

WHILE A=B
<Statement>

ENDWHILE

This would be represented in assembly code as follows:

[
.while

CMP A,B
BNE endwhile

<Statement>

B while
.endwhile
l

Note that, once again, the suffix for the reverse of the WHILE condition is
used in the branch instruction. This is because if the branch succeeds, the
loop terminates.

FOR ... NEXT

The FOR statement is a development of the simpler control loops which
incorporate a counter to execute the code a specific number of times. An
example of a FOR statement is as follows:

FOR num = start TO finish STEP s
<Statement>

NEXT

The counter, in this case num, is called the control variable. It is initialised
to the value of start, then incremented in the loop in steps of 's'. When it
reaches, or exceeds, the value of 'finish', the loop terminates. An added
complication is that 'start' may be greater than 'finish'. A negative step size
will then be used to decrement the control variable.

The assembly code template of a FOR loop is given next. Only integer para
meters may be used. Negative numbers must be represented in two's com
plement format. It is assumed that the loop parameters are contained in
the appropriately named registers:

286

,, .loop

Control Statements

MOV num,start ;Initialise control variable

< statement >
ADD num,num,s
CMP s,iO
BMI negative
CMP num,finish
BLE loop
B end

Add step to control variable
Is step size negative?
Reached if positive step size
Compare control variable with finish
IF <= finish do loop again
Loop finished so jump to end

.negative Reached if step size is negative

CMP num,finish Compare control variable with finish
BGE loop IF >= finish then loop again

. end end of loop .

The routine begins by moving the loop's start value into the control
variable. It then performs one cycle of the foop. At the end of each cycle, the
step size is added to the control variable. Note that, if the step size is a
negative number, this will automatically decrease the control variable.

Finally, we check to see if the control variable has reached its terminating
value. This is slightly more involved than might be expected. If the step size
is positive, we check to see if the control variable is greater than or equal to
the required finishing value. However, if a negative step size is being used,
then we need to terminate the loop when the control variable becomes less
than or equal to the finishing value. This explains why the template tests
the step size to discover its sign, then branches to one of two different
pieces of code to perform the comparison.

Listing 23.2 shows an example of a complete machine code FOR ... NEXT
loop. From BASIC, we enter the three loop parameters, start value, finish
value and step size. These are passed to the routine using the resident inte
ger variables. The machine code loop then prints out the value of the con
trol variable on each iteration. Try entering different step sizes, both posi
tive and negative, as well as various start and finish values. Confirm that,
for each set of values, the routine behaves in exactly the same way as a
BASIC FOR loop would.

Listing 23.2 A FOR ... NEXT loop in assembly code.

10 REM Example of the FOR ... NEXT loop template
20 REM (c) Michael Ginns 1987
30 REM DABS Press : Archimedes Assembly Language

287

Archimedes Assembly Language

40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

288

REM

DIM for 256

REM define names for registers used
start 3
finish 4
s 5
num 6

FOR pass 0 TO 3 STEP 3
P%=for
[
OPT pass

MOV num,start

.loop

;Initialise control variable

********* Statements in the loop ********
; ** These print the value of the control variable **

MOV RO,num
ADR Rl,string buff
MOV R2,#32 -
SWI "OS BinaryToDecimal"
MOV R0,#0
STRB RO, [Rl,R2]
MOV RO,Rl
SWI "OS WriteO"
SWI "OS-NewLine"

Get value of control variable
Pointer to string buffer
Length of string buffer
Convert number to a string
Terminate the string using
character CHR$(0)
Pointer to the number string
Output the string
Output a NewLine

; ********* Loop statements end ********

ADD num,num,s
CMP s,#0
BMI negative

CMP num,finish
BLE loop
B end

.negative
CMP num,finish
BGE loop

.end

MOV PC,R14

.string buff
EQUS STRING$(32,CHR$(0))

;Add step to control variable
;Is step size negative?

;Reached if positive step size
;Compare control var with finish
;IF <= finish do loop again
;Loop finished so jump to end.

;Reached if step size is negative
;Compare control var with finish '
;IF >= finish then loop again

;End of loop

;Back to BASIC

r'\.

,,
,.---,,

/"\

Control Statements

570 l
580 NEXT pass
590
600 REPEAT
610 INPUT " Enter the loop start value" I D%
620 INPUT " Enter the loop end value" , E%
630 INPUT " Enter the loop step size" , F%
640 CALL for
650 UNTIL FALSE

CASE Statement

The CASE statement is really a multi-clause IF statement. The assembler
template of a slightly simplified CASE statement is given next. It assumes
that the variable being tested is an integer held in the register called 'num'.
It is also assumed that this is being tested against a series of constants
Cl...Cn. In practice, you can compare 'num' with other registers or derive
values from memory:

AAL-S

CMP num,#Cl
BNE skipl

<Clause 1>
B endcase

.skipl
CMP num,#C2
BNE skip2

<Clause 2>
B endcase

.skip2
CMP num,#C3
BNE skip3

.skip n
CMP num, #Cn
BNE otherwise

<Clause n>
B endcase

.otherwise

.endcase
l

<Otherwise clause>

289

Archimedes Assembly Language

The value in 'num' is compared with each of the constants in tum. If the
comparison fails, a branch instruction jumps to the next comparison in the
structure. If a match is found, the instructions in the corresponding clause
are reached and executed. After this, an unconditional branch instruction
jumps to the end of the CASE structure.

If none of the comparisons in the CASE structure succeed, control falls ~
through the routine to the instructions making up the default OTHERWISE
clause.

An example of the use of the CASE template is given in listing 23.3. The pro
gram waits for a key to be pressed, then uses its ASCII value in a case state
ment. ASCII values 49 to 51 correspond to the numeric keys 1 to 3. For each
of these values there is a corresponding clause in the CASE statement which
simply prints out the number in words. Pressing any other key causes the
OTHERWISE clause to be called which prints out a suitable message.

Listing 23.3. Example of the CASE template.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

290

REM Example of the CASE template
REM (cl Michael Ginns 1987
REM DABS Press : Archimedes Assembly Language
REM

DIM case 256

REM Define names for register used
num = 0

FOR pass = 0 TO 3 STEP 3
P% = case
[
OPT pass

SWI "OS ReadC"

CMP num,#49
BNE skipl
SWI "OS Writes"
EQUS "One"
EQUB 0
SWI "OS NewLine"
B endcase

.skipl
CMP num,#50
BNE skip2

Wait for key to be pressed

First test
Is it '1'
If not, skip to next test
Clause 1
Output 'one'

Branch to end of case statement

Second test
Is it '2'
If not, skip to next test

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

SWI "OS Writ"eS"
EQUS "Two"
EQUB 0
SWI "OS NewLine"
B endcase

.skip2
CMP num,#51
BNE otherwise
SWI "OS Writes"
EQUS "Three"
EQUB 0
SWI "OS NewLine"
B endcase

.otherwise
SW! "OS Writes"
EQUS "Only keys
EQUB 0
SWI "OS NewLine"

.endcase

MOV PC,Rl4

l
NEXT pass

Clause 2
Output 'two'

Control Statements

Branch to end of case statement

Third test
Is it '3'
If not, skip to 'otherwise' clause
Clause 3
Output 'Three'

Branch to end of case statement

Otherwise clause
; Output message

1,2 or 3 please !"

Back to BASIC

PRINT ' ' "Enter characters now ! ! " '
REPEAT
CALL case
UNTILO

Procedures

We have seen that the ARM processor gives at least partial support to the
use of procedures in the form of the branch with link instruction, (BL). This
allows us to call a sub-routine from an arbitrary point and return back to
the point when the sub-routine terminates. The BL instruction was descri
bed in detail in Chapter 11.

The problem with this simple approach can be seen if we consider a real ex
ample. Supposing we call a procedure named '£reddy' and that this calls a
second procedure named 'output'. Before calling 'output', the '£reddy' pro
cedure must take a copy of its return address, usually held in register R14.
If not done, it will be overwritten by the return address of the 'output' pro
cedure when the second call is made.

291

Archimedes Assembly Language

At first, this may seem an acceptable scheme, and for small programs it is.
However, in larger programs a procedure may call another which may call
a third which in turn may call a fourth ... and so on. In cases like this, as the
chain of called procedures grows, it becomes more of a problem to store all
the return addresses. Also, in dynamically recursive programs where a
procedure calls itself, we will not know in advance the depth to which pro-
cedure calls will be nested. Keeping track of the various return addresses \
becomes impossible.

To solve these problems, we use a stack. In Chapter 12 we saw how the
LIFO nature of the stack makes it ideal for storing data from nested struc
tures. In this application the stack is used as follows.

Each time a procedure is called, it simply pushes its return address onto the
stack. The data on the stack thus represents the return addresses of all ac
tive procedures, stored in the order in which they were called. The top ele-
ment of the stack is always the return address of the most recently called)
procedure. When a procedure ends, therefore, it simply pulls the top ele-
ment off the stack and returns to this address.

Local Variables

When implementing procedures, especially recursive ones, it is essential to
use local variables. These are variables which can be used within the proce
dure without affecting the values of any outside variables. To implement a
similar system in assembly language, we again call upon the stack.

On entry to a procedure, we push onto the stack, not only the procedure's
return address, but also the contents of all the other working registers.
Having done this, we can use the registers freely within the procedure as
their contents outside it have been preserved on the stack. When the proce
dure ends, as well as pulling the return address off the stack, we also pull
the stored values of the registers, thus restoring their original contents.

A procedure template is given in figure 23.3. A full ascending stack is used.
However, any type of stack is acceptable. The stack pointer is assumed to
have been set up in the register called 'sp'. Note, that the stack instructions
have 'reg_list' specified within them. This is a list of registers which will be
used as local variables within the procedure and need preserving:

292

Control Statements

.main_program

BL subroutine Call procedure

.end_program

.subroutine

STMFA (sp) !, {Rl4,<reg_list} Stack return addr and regs

<body of subroutine>

LDMFA (sp) !, {Rl4,<reg_list} Unstack return address & regs

MOV R15,R14 Return from subroutine

Figure 23.3. Template of a procedure using stacks.

Parameter Passing

The final consideration to be made as regards implementing procedures is
parameter passing. In simple cases, it is possible to pass data to a proce
dure using the processor registers. This is done in the example program in
the next section. However, in more complex procedures, this method
rapidly becomes impractical as we soon run out of registers.

As an alternative, we can again use a stack. Before a procedure is called,
the parameters for it are pushed on to the stack by the calling routine.
When called, the procedure then pulls its parameters off the stack again.
This provides a simple, but general, way of passing any number of parame
ters to a procedure. It also deals correctly with recursive procedure calls to
any depth.

Example of Recursive Procedures

Listing 23.4 gives an example of a recursively-called procedure which uses
. local variables. Only three parameters are passed to the procedure, so
. registers are used.

The procedure draws a circle on the screen, then calls itself four times to
create four more half-sized circles within the original. However, when
these calls are made, as well as drawing the new circle, four further calls
will be made. Each of these calls will produce four more calls and so on.
This can be summarised by the following rule:

293

Archimedes Assembly Language

To draw a circle do the following:
Produce the circle on the screen
Draw four smaller circles (implies recursion)

Using this procedure once will cause a whole sequence of recursive proce
dure calls which will never end. However, we can add the rule that if a
circle becomes too small the procedure may terminate without producing
any further circles. The sequence of calls will then be limited, and the origi
nal procedure call will eventually end.

In order to see recursion in operation, the program will wait for a key to be
pressed after drawing each circle. Try stepping through the program ob
serving the sequence of procedure calls made. As a point of interest, try
pressing ESCAPE to execute the program at full speed. The speed of the ARM
processor is apparent when you consider that the program draws 1365
circles! Note, the graphics used to create the circles will be explained in the
next chapter.

Listing 23.4. An example of a recursive procedure.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

294

REM Example of recursive procedure calls
REM (c) Michael Ginns 1988
REM Dabs Press : Archimedes Assembly Language
REM

DIM pattern 256
DIM stack mem 1000

REM Define constants
vdu 256
plot 25
move 4
circle 145
gcol 18

REM Define names for registers used
x = 1 REM Used to pass x co-ord to circ procedure
y = 2 REM Used to pass y co-ord to circ procedure
r = 3 REM Used to pass radius to circ procedure
col =10 REM circle colour - global so never stacked
sp = 12 REM Stack pointer

FOR pass 0 TO 3 STEP 3
P%=pattern
[
OPT pass

ADR sp,stack_mem Set stack pointer bottom of stack

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810

STMFA (sp) ! , {Rl4}

MOV col,#2

MOV x,#640
MOV y,#500
MOV r,#492

BL circ

LDMFA (Sp) ! I {Rl4}

MOV PC,Rl4

Control Statements

Push BASIC's return addr onto stack

Set global variable 'col' to colour 2

Initial call of circ procedure
with parameters (640,500,492)

Call the circ procedure

Pull BASIC's return addr back off stack

Return to BASIC

Circ procedure starts here. It is defined as; circ(x,y,r)
It draws a circle of radius r at (x,y) & then recursively
calls itself 4 times to produce circles at:

x+r,y
x-r,y
x,y+r
x,y-r

.circ

STMFA (sp) !,{R0-R9,Rl4} Stack return addr and RO-R9
RO to R9 can now be used freely

CMP r, #10
BLT endproc

Compare radius with 10
IF r < 10 then endproc

; The next section of code simple draws a circle of
; radius r at co-ordinates (x,y) in a new colour

SWI vdu+gcol
SW! vdu+O
ADD col,col,#1
AND RO,col,#127
SW! "OS WriteC"

SW! vdu+plot
SWI vdu+move
MOV RO,x
SW! "OS WriteC"
MOV R0,x,LSR#8
SW! "OS WriteC"
MOV RO,y
SW! "OS WriteC"
MOV RO, y, LSR#8
SW! "OS WriteC"

SW! vdu+plot
SWI vdu+circle
MOV RO,r

Perform GCOL O,col MOD 127

Increment col

Perform MOVE x,y

Perform PLOT 145,r,O

295

Archimedes Assembly Language

820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
llOO
lllO
ll20
ll30
ll40
ll50
ll60
ll 70

296

SWI "OS WriteC"
MOV RO,r,LSR#8
SWI "OS WriteC"
SWI vdu+o
SWI vdu+O

MOV r,r,LSR#l

SWI "OS Reade"

ADD x,x,r
BL circ

SUB x,x,r,LSL#l
BL circ

ADD x,x,r
ADD y,y,r
BL circ

SUB y,y,r,LSL#l
BL circ

.endproc

Half radius for next circles

Wait for key press - may be removed

Call circ(x+r,y,r)

Call circ(x-r,y,r)

Call circ(x,y+r,r)

Call circ(x,y-r,r)

; End of circ procedure

LDMFA (sp) !, {R0-R9,Rl4) ; Pull return addr/regs. R0-R9

MOV PC,Rl4

NEXT
MODE 15

; Return from procedure

PRINT "Press a key to step through program"
PRINT "ESCAPE for full speed"
CALL pattern

•

r

24 · Graphics Templates

At first sight, it may seem that all but the most simple graphics are beyond
our reach in machine code. The calculations involved in just plotting the
points on a straight line are bad enough, let alone creating filled triangles,
circles and ellipses, or dealing with colour. However, all is not lost! The
Archimedes designers have anticipated the problems!

When we issue graphics commands from BASIC, eg, 'CIRCLE 600,600,100', the
BASIC interpreter does very little work. It simply interprets the command
and sends the relevant data to the operating system. It is the operating
system which actually performs the required graphics operation. As we
have access to the operating system's routines from our machine code pro
grams, we also have full access to the same graphics facilities.

The data for graphics operations, as well as a range of other functions, is
passed to the operating system using special control characters. These are
sent to the VDU drivers, in the same way as normal characters. However,
the operating system intercepts these characters and interprets them as
commands. When the operating system receives a command in this way, it
may also intercept some of the following characters to get any data re
quired for the command, for example, the co-ordinates to use in a graphics
command. A complete list of all of the Archimedes control codes and their
functions are given in Appendix H.

By sending the correct sequence of control characters to the VDU drivers,
therefore, we can carry out many complex operations including graphics.
An example may help to convince you! Consider the two BASIC statements:

MOVE 100,100
DRAW 1200,1000

BASIC requests the operating system to draw the line by issuing the follow
ing characters:

VDU 25,4,100,0,100,0

297

Archimedes Assembly Language

for the MOVE statement. And:

VDU 25,5,176,4,232,3

for the DRAW statement.

You can check this by entering the two VDU statements, and verifying that
they draw the same line as the original BASIC statements.

All we have to do to produce graphics in machine code, therefore, is to be
able to output characters. The BASIC statement VDU normally does this, so
we shall begin by showing how this statement can be emulated from mac
hine code.

VDUn

To print single ASCII-value characters, we use one of two possible SWI calls.
We have already seen both calls used in previous examples:

SWI 256 + <ASCII>
SWI "OS WriteC"

The first call is used when a fixed, known character needs to be outputted,
like a graphics plot code. The number of the SWI call used is 256 plus the
ASCII code of the character. So:

SWI 256 + 2

would perform the equivalent of VDU 2 and output character two - the
control code to turn the printer on.

The second SWI call, os_ WriteC, is used where we do not know which char
acter is to be outputted at assembly time. For example, graphics x,y co
ordinates may be calculated by a machine code program, then outputted
using this call. When called, it outputs the character whose ASCII code is
contained in the lower byte of the processor register RO. Both of these SWI
routines are described fully in Chapter 17.

PLOT

PLOT is the workhorse of the graphics system. It has three parameters: an
option code and a pair of x,y co-ordinates. The option code is in the range

298

•

Graphics Templates

zero to 255 and selects what you want to plot, eg, lines, triangles, circles,
sprites and so on.

The VDU control code for PLOT is character 25. Thus, to perform PLOT from
machine code we simply output character 25. After this we output the op
tion code required and finalfy, the x,y co-ordinates to be used. Unfortun
ately, there is a problem! The graphics co-ordinates are in the range:

0 <= x <= 1279

and:

0 <= y <= 1023

However, the maximum number that we can represent in one byte, and
therefore one character, is 255. This means we can't send the co-ordinates
as single characters.

Instead, we must send them as two pairs of two characters each. The first
character in each pair is the low byte of the co-ordinate, and the following
one is the high byte. For example, to send a co-ordinate of 700, we would
do the following:

700 - 00000010 10111100

I ~~~~~- Low byte=188

~~~~~~~~~~~ High byte=2 

The characters sent, therefore, are: 

VDU 188,2 

The upper and lower bytes of a given number can be found using the DIV 
and MOD operators: 

Lower byte = <co-ordinate> MOD 256 
Upper byte = <co-ordinate> DIV 256 

On the BBC micro this splitting of co-ordinates down into two separate 
bytes is insignificant. Being an eight-bit machine, it can only deal with byte
sized pieces of data anyway. However, on the Archimedes it is inconve
nient to manipulate each piece of graphics data as two completely separate 
bytes. It is much more sensible to process and store graphics co-ordinates 

299 



Archimedes Assembly Language 

as complete 32-bit words. When we need to plot them, then and only then, 
do we split the co-ordinates into two byte pieces. They are then sent to the 
VDU driver. 

The routine shown in figure 24.1 takes a pair of co-ordinates, splits them 
into high and low bytes, then sends them to the VDU driver. The registers 
called 'x' and 'y' are assumed to contain the x and y co-ordinates which are 
to be output. 

We will need this routine each time we perform a graphics operation. For 
this reason, it is presented as a subroutine, called "co_ord", which can be 
called from a main program whenever it is required . 

. co ord 
MOV-RO,x 
SWI "OS WriteC" 
MOV RO,x,LSR#8 
SWI "OS WriteC" 
MOV RO,y 
SWI "OS WriteC" 
MOV RO,y,LSR#8 
SWI "OS WriteC" 
MOV PC,Rl4 

Figure 24.1. Sending x and y graphics co-ordinates to the VDU driver. 

To summarise, to perform a PLOT operation we do the following: 

1) Output character 25 (VDU code for PLOT) 

2) Output the PLOT option code 

3) Place the x and y co-ordinates in registers x and y 

4) Call the co-ords sub-routine 

Listing 24.1 below uses this technique to plot a line on the screen. 

Listing 24.1. Example of a PLOT command from assembly code. 

300 

10 REM Example · of the PLOT template 
20 REM (c) Michael Ginns 1988 
30 REM Dabs Press : Archimedes Assembly Language 
40 REM 
50 
60 DIM plot example 256 



_,,.-....., 

70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 

Graphics Templates 

REM Define constants and register names 
vdu 256 : REM Start of SWI block to perform VDU n 
plot = 25 
line = 5 
x 1 
y = 2 

: REM passes x co ord to co-ord routine 
: REM passes y co-ord to co-ord routine 

FOR pass = 0 TO 3 STEP 3 
P% = plot example 
[ -
OPT pass 

MOV Rl0,Rl4 

SWI vdu+plot 
SWI vdu+line 
MOV x,#512 
MOV y,#640 
BL co ord 

MOV PC,RlO 

Preserves BASIC return addr in RlO 

VDU 25 (code for PLOT) 
VDU 5 (PLOT code for a line) 
Use co_ordinates (512,640) 

Call 'co ord' subroutine 

Return to BASIC (addr in RlO) 

; Subroutine to output pair of x,y co_ords to VDU drivers 

.co ord 
MOV-RO,x 
SWI "OS WriteC" 
MOV RO, x, LSR#8 
SWI "OS WriteC" 
MOV RO,y 
SWI "OS WriteC" 
MOV RO, y, LSR#8 
SWI "OS WriteC" 
MOV PC,Rl4 

J 
NEXT 

MODE 0 
CALL plot_example 

Move x co-ord into register RO 
Output the x co-ord low byte 
Put hi byte x co-ord in low byte RO 
Output the x co-ord high byte 
Move y co-ord into reg RO 
Output the y co-ord low byte 
Put hi byte y co-ord in low byte RO 
Output the y co-ord high byte 
Return from subroutine 

It is important to stress that any graphics shape can be drawn using the 
correct option in a PLOT command. A full list of the various plot option 
codes can be found in Appendix I. BASIC commands like MOVE, CIRCLE, 
RECTANGLE, LINE and so on. All translate into one or more PLOT commands. 
These commands will be covered in the following sections. 

301 



Archimedes Assembly Language 

SWIPLOT 

In versions 1.20 and later of the Arthur operating system, a SWI call has 
been introduced which performs a PLOT operation directly. The theory 
behind this is exactly the same as that described above. The SWI routine 
simply save from having to send the PLOT data as separate control 
characters to the operating system via the VDU drivers. The routine is 
detailed below. 

SWI "OS_Plot" 

On Entry: RO= PLOT option code 
Rl= x co-ordinate 
R2= y co-ordinate 

For example, the line drawing program in listing 24.1 could be re-written 
using the PLOT SWI as follows: 

[ 
MOV R0,#5 
MOV Rl,#512 
MOV R2,#640 
SWI "OS Plot" 
MOV PC,Rl4 
l 

PLOT option code for a line 
Put x co-ord in Rl 
Put y co-ord in R2 

'os_Plot' take the plot option code and the x,y co-ordinates as complete 16-
. bit quantities. It then invokes an equivalent function to the previous co
ordinate plotting routine given in figure 24.1. 

In subsequent graphics templates, however, we shall continue to use the 
original method of plotting data using the co-ordinate splitting and output 
subroutine for compatibility reasons. 

However, should you wish to use "os_Plot" then simply replace the 
statements to output the PLOT option code and call the co-ords subroutine 
with SWI "os_Plot". Remember to set up registers RO to R2 to contain the 
appropriate data for the PLOT operation before calling the SWI routine. 

Some graphics operations, for example, defining graphics windows and 
moving the graphics origin have no equivalent using "os_Plot". To 
implement these in assembly language, therefore, we must again return to 

302 

'\ 



Graphics Templates 

the method of outputting data using the appropriate VDU control codes. 
Once. again, as the data may be greater than 255, the co-ordinates 
outputting routine will still be required. 

MOVEx,y 

MOVE x,y is directly equivalent to PLOT 4,x,y. Refer to the section on PLOT for 
details on how to perform this from machine code. As an example, the fol
lowing MOVE statement could be implemented by the section of code given 
below as follows: 

MOVE 6po,5oo 

[ 
MOV x, #600 
MOV y,#500 
SWI vdu+25 
SWI vdu+4 
BL co ord 

Put x co-ord in register named X 
Put y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for a MOVE 
Output co-ordinates 

Note that it is assumed that the register names x and y have been associa
ted with real register numbers. The constant vdu has been set to equal 256. 
Note also that the co-ord subroutine is being used. This must be included in 
any real program. These assumptions are common to many of the ex
amples in the following sections, and will not be repeated each time. 

The co-ordinates of the MOVE operation are supplied as immediate 
constants. However, they could be derived from anywhere, or calculated 
by the program. This applies to the example programs given with other 
graphics commands in the following sections too. 

POINTx,y 

POINT x,y is directly equivalent to PLOT 69,x,y. Again, refer to the section on 
PLOT for further details. As an example, the following POINT statement 
could be implemented by the section of code given below: 

POINT 100, 100 

MOV x, #100 
MOV y, #100 
SWI vdu+25 
SWI vdu+69 

Put x co-ord in register named X 
Put y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for a POINT 

303 



Archimedes Assembly Language 

BL co ord Output co-ordinates 

Notice again the reference to the co-ord subroutine. 

DRAWx,y 

DRAW x,y is directly equivalent to PLOT 5,x,y. As an example, the following 
DRAW statement could be implemented by the section of code given below: 

DRAW 800,700 

MOV x,#800 
MOV y,#700 
SWI vdu+25 
SWI vdu+5 
BL co ord 

Put x co-ord in register named X 
Put y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for DRAW 
Output co-ordinates 

Once more it should be stressed that the co-ord subroutine is being used 
and must be included into any real program. 

BY 

MOVE, POINT and DRAW can all be followed with the BY command. This 
causes the operating system to treat the co-ordinates as being relative to 
the current graphics co-ordinates, rather than being absolute numbers. 

To do the same in machine code, we use exactly the same routines for 
MOVE, DRAW and POINT, but we use a PLOT code which is four less than the 
values used before. For example: 

304 

MOVE BY x,y 
PLOT O,x,y 
POINT BY x,y 
PLOT 65,x,y 
DRAW BY x,y 
PLOT 1,x,y 



Graphics Templates 

LINE x1, y1,x2, y2 

The BASIC LINE command takes two · sets of co-ordinates: the start point of 
the line to be drawn, and the end point. The equivalent is MOVE followed by 
DRAW. For example: 

LINE xl,yl,x2,y2 

is equivalent to: 

MOVE xl,yl 
DRAW x2,y2 

To implement LINE, therefore, we simple use the MOVE and DRAW templates 
given previously. Listing 24.2 gives an example of this to produce some in
teresting effects. 

Listing 24.2. Example of the LINE template. 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 

AAL-T 

REM Example of the LINE template 
REM (c) Michael Ginns 1988 
REM Dabs Press : Archimedes Assembly Language 
REM 

DIM lines 256 

REM Define constants and register names 
vdu 256 : REM Start of SWI block to perform VDU n 
plot = 25 
move = 4 
draw = 5 
vsync= 19 

x cord = 
y-cord = 
x-= 1 
y = 2 

3: REM program's x co ordinate 
4: REM program's y co-ordinate 

REM passes x co ordinate to co-ord routine 
REM passes y co-ordinate to co-ord routine 

FOR pass 0 TO 3 STEP 3 
P% = lines 
[ 
OPT pass 

.repeat 
MOV x cord,ifO 
.draw=loop 

Initialise 'x' co-ordinate 
Loop to draw lines 

RSB y cord,x_cord,ifl280 Obtain y co-ord (y 1280 - x) 

305 



Archimedes Assembly Language 

310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 

306 

MOV RO,#vsync 
SW! "OS_Byte" 

*FX 19 to reduce screen flicker 

; The following code performs ; LINE O,y,x,O 

MOVE 0, y 
SW! vdu+plot VDU 25 (code for PLOT) 
SW! vdu+move VDU 4 (PLOT code for a MOVE) 
MOV x,#0 Use co ordinates (0,y) 
MOV y,y cord 
BL co ord Call 'co ord' subroutine 

DRAW x,0 
SW! vdu+plot VDU 25 (code for PLOT) 
SW! vdu+draw VDU 5 (PLOT code for a DRAW) 
MOV x,x cord Use co ordinates (x, 0) 
MOV y, #0 
BL co ord Call 'co ord' subroutine 

SW! "OS NewLine" Output a new line 

ADD x cord,x cord,#16 Increment x co-ord 
CMP x-cord,#l280 Are we at edge of screen 
BLT draw_loop If not, draw next line 

B repeat Keep repeating the whole program 

;Subroutine: output a pair of x,y co-ords to VDU drivers 

.co ord 
MOV-RO,x 
SW! "OS WriteC" 
MOV RO,x,LSR#8 
SW! "OS WriteC" 
MOV RO,y 
SW! "OS WriteC'' 
MOV RO, y, LSR#8 
SW! "OS WriteC'' 
MOV PC,Rl 

l 
NEXT 

MODE 0 
CALL lines 

Move x co-ord into register RO 
Output the x co-ord low byte 
Put hi byte x co-ord in low byte RO 
Output the x co-ord high byte 
Move y co-ord into register RO 
Output the y co-ord low byte 
Put hi byte y co-ord in low byte RO 
Output the y co-ord high byte 
Return from subroutine 

) 

~-



Graphics Templates 

CIRCLE x,y,radius 

BASIC's CIRCLE command takes three parameters; the x,y co-ordinates of the 
circle's centre and its radius. 

The corresponding circle PLOT command (option code 145), however, works 
in a slightly different way. First we move to the centre of the circle and 
then use the PLOT 145 command with the co-ordinates of any point on the 
circle's circumference. Thus, to perform the equivalent of the BASIC CIRCLE 
command we do the following: 

MOVE x,y 
PLOT 145,radius,0 

Note that the PLOT 145 code plots a circle using relative co-ordinates, ie, 
the co-ordinates given are added to those of the previous position visited. 
Thus, PLOT 145,radius,O specifies a point at absolute co-ordinates (x + 
radius,y). This point is clearly on the circumference of the required circle. 

Once again, to implement CIRCLE, we simply use the templates for MOVE 
and PLOT given earlier. For example, to implement the following CIRCLE 
command we would use the section of code given below: 

CIRCLE 512,600,300 

MOV x,#512 
MOV y,#600 
SWI vdu+25 
SWI vdu+4 
BL co ord 
MOV x:-#300 
MOV y,#0 
SWI vdu+25 
SWI vdu+145 
BL co ord 

Put x co-ord in register named X 
Put y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for MOVE 
Output co-ordinates 
Put radius in register named X 
Put 0 in register named Y 
VDU 25 (code for PLOT) 
PLOT code for a relative CIRCLE 
Output co-ordinates 

Listing 24.3 creates circles using this technique. It repeatedly plots 48 circles 
'\ of gradually increasing radius, then 48 circles of gradually decreasing 

radius. After plotting each circle, the screen is scrolled giving some quite 
surprising results! 

307 



Archimedes Assembly Language 

Listing 24.3. Example of the CIRCLE template. 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 

308 

REM Example of the CIRCLE template 
REM (c) Michael Ginns 1988 
REM Dabs Press : Archimedes Assembly Language 
REM 

DIM circles 256 

REM Define constants and register names 
vdu 256 : REM Start of SW! block to perform VDU n 
plot 25 
move 4 
circle 145 
gcol 18 
vsync 19 

x = 1 REM passes x co ordinate to co-ord routine -y = 2 REM passes y co ordinate to co-ord routine 
radius 3: REM circle radius 
count 4 : REM circle counter 
inc 5 : REM radius increment value 
col 6: REM circle colour 

FOR pass = O 
P% = circles 
[ 

TO 3 STEP 3 

OPT pass 

MOV radius,#0 
MOV inc, #16 
MOV col,#114 

.repeat 
MVN R0,#31 
EOR inc,inc,RO 
MOV count,#0 

SWI vdu+gcol 
SW! vdu+O 
AND RO,col,#127 
SW! "OS WriteC" 
ADD col~col,#1 

.draw_loop 

ADD radius,radius,inc 

MOV RO,#vsync 
SW! "OS_Byte" 

Initialise radius 
Initialise increment 
Set colour 

loop to repeat entire program 
toggle increment between 16 and 
by using EOR 
Initialise circle counter 

Perform GCOL 0,col MOD 256 

Increment col 

Loop to draw 48 circles 

Change radius for each circle 

*FX 19 to reduce screen flicker 

; The following code performs CIRCLE 512,640,radius 

-16 



r 

510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 

MOV x,#640 
MOV y,#512 
SWI vdu+plot 
SWI vdu+move 
BL co ord 

MOV 
MOV 
SW! 
SWI 
BL 

x,radius 
y, #0 
vdu+plot 
vdu+circle 
co ord 

SW! "OS NewLine" 

ADD count,count,#1 
CMP count,#48 
BLT draw_loop 

B repeat 

Graphics Templates 

MOVE 512,640 

VDU 25 (code for PLOT) 
VDU 4 (PLOT code for a MOVE) 
Call 'co ord' subroutine 

PLOT 145,radius,0 

VDU 25 (code for PLOT) 
VDU 145 (PLOT a relative CIRCLE) 
Call 'co ord' subroutine 

Output a new line 

Increment the circle counter 
Have 48 circles been drawn? 
If not, draw next circle 

Keep repeating the whole program 

; Subroutine: output a pair of x,y co-ords to VDU drivers 

.co ord 
MOV-RO,x 
SWI "OS WriteC" 
MOV RO,x,LSR#8 
SW! "OS WriteC" 
MOV RO,y 
SW! "OS WriteC" 
MOV RO,y,LSR#8 
SW! "OS WriteC" 
MOV PC,Rl4 

l 
NEXT 

MODE 15 
CALL circles 

Move x co-ord into reg RO 
Output the x co-ord low byte 
Put hi byte x co-ord in low byte RO 
Output the x co-ord high byte 
Mov~ y co-ord into register RO 
Output the y co-ord low byte 
Put hi byte y co-ord in low byte RO 
Output the y co-ord high byte 
Return from subroutine 

Filled Circles 

A filled circle may be created in BASIC using the CIRCLE FILL command. To do 
this in assembly code, we use our normal circle plotting routine, but replace 
the 'plot relative circle' option (145) with that for a 'relative filled circle' 
(153). For example: 

CIRCLE FILL 512,600,300 

309 



Archimedes Assembly Language 

MOV x,#512 
MOV y,#600 
SWI vdu+25 
SWI vdu+4 
BL co ord 
MOV x-;-#300 
MOV y,#0 
SWI vdu+25 
SWI vdu+153 
BL co ord 

Put x co-ord in register named x 
Put y co-ord in register named y 
VDU 25 (code for PLOT) 
PLOT code for MOVE 
Output co-ordinates 
Put radius in register named x 
Put 0 in register named y 
VDU 25 (code for PLOT) 
PLOT code for a relative FILLED CIRCLE 
Output co-ordinates 

RECTANGLE x,y,w,h 

This command takes four parameters. The first two parameters specify the 
co-ordinates of the bottom-left corner of the rectangle. The next two give 
the width and height of the rectangle respectively. Again, the word FILL can 
be used to produce a filled rectangle. 

Strangely, there is a PLOT command available to draw a FILLED rectangle 
directly, but not an outline one! The filled rectangle is therefore easier to 
create, and we will deal with this one first. 

Like the circle, the filled rectangle command can be converted into one 
MOVE and one PLOT operation, again relative co-ordinates are used in the 
PLOT command: 

RECTANGLE FILL x,y,w,h 

is equivalent to: 

MOVE x,y 
PLOT 97,w,h 

The problem with drawing filled rectangles is again one of moving and 
plotting, both of which we can do from assembly language. An example 
shows the template needed to do this: 

310 

RECTANGLE FILL 200,100,800,700 

MOV x ,#200 
MOV y, #100 
SWI vdu+25 
SWI vdu+4 

Put x co-ord in register named x 
Put y co-ord in register named y 
VDU 25 (code for PLOT) 
PLOT code for MOVE 



BL co ord 
MOV x-;-#800 
MOV y,#700 
SWI vdu+25 
SWI vdu+97 
BL co ord 

Outline Rectangle 

Graphics Templates 

Output co-ordinates 
Put rectangle width in register named X 
Put rectangle height in register named Y 
VDU 25 (code for PLOT) 
PLOT code for a relative filled rectangle 
Output co-ordinates 

To draw an outline rectangle we must draw each of its four sides individu
ally using the equivalent of the DRAW command. This can be done in the 
following way: 

RECTANGLE x,y,w,h 

which is equivalent to: 

MOVE x,y 
DRAW BY w,0 
DRAW BY 0,h 
DRAW BY -w, 0 
DRAW BY 0, -h 

Note that the DRAW commands use relative co-ordinates. This translates 
to machine code very easily using the standard MOVE and DRAW BY tem
plates described earlier. 

Next is an example of the machine code routine required to mirror the 
operation of the statement: 

RECTANGLE 100,200,500,300 

This is somewhat long-winded. However, it is really no more complicated 
than the simple MOVE and DRAW which we have used before. 

MOV w,#500 Put rectangle width in register named W 
MOV h,#300 Put rectangle height in register named H 

MOVE X,Y 
MOV x, #100 
MOV y,#200 
SWI vdu+25 
SWI vdu+4 
BL co ord 

Put X co-ord in register named X 
Put Y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for MOVE 
Output co-ordinates 

311 



Archimedes Assembly L~guage 

FILL x,y 

DRAW BY w,0 
MOV x,w Put 
MOV y,#0 
SWI vdu+25 
SWI vdu+l 
BL co ord 

DRAW BY 0,h 
MOV x,#0 
MOV y,h 
SWI vdu+25 
SWI vdu+l 
BL co ord 

DRAW BY -w,O 

rectangle width W in register named X 
Put 0 in register named Y 
VDU 25 (code for PLOT) 
PLOT code for DRAW relative 
Output co-ordinates 

Put 0 in register named X 
Put rectangle height H in register Y 
VDU 25 (code for PLOT) 
PLOT code for DRAW relative 
Output co-ordinates 

\SB x,w,#0 Put-win register named X 
LOV y,#0 Put 0 in register named Y 
SWI vdu+25 VDU 25 (code for PLOT) 
SWI vdu+l PLOT for DRAW relative 
BL co ord Output co-ordinates 

DRAW BY 0,-h 
MOV x,#0 Put 0 in register named X 
RSB y,h,#0 Put -Hin register named Y 
SWI vdu+25 VDU 25 (code for PLOT) 
SWI vdu+l PLOT for DRAW relative 
BL co ord Output co-ordinates 

This command is followed by a pair of co-ordinates and flood fills the 
screen from this point. Its direct equivalent is PLOT 133,x,y. The routine to 
perform FILL, therefore, is simply the standard PLOT routine using an option 
code of 133. For example: 

312 

FILL 300,400 

MOV x,#300 
MOV y, #400 
SWI vdu+25 
SWI vdu+l33 
BL co ord 

Put X co-ord in register named X 
Put Y co-ord in register named Y 
VDU 25 (code for PLOT) 
PLOT code for FILL 
Output co-ordinates 



Graphics Templates 

ORIGINx,y 

The VDU code to re-define the origin is 29. We do not need to use a plot 
command, instead we use VDU 29, then output the appropriate co
ordinates. For example: 

ORIGIN 500,700 

MODEn 

MOV x,#500 
MOV y,#700 
SWI vdu+29 
BL co ord 

Put X co-ord in register named X 
Put Y co-ord in register named Y 
Perform VDU 29 
Output new co-ordinates 

VDU 22 selects the new screen mode. It is followed by a single character, 
giving the number of the mode to be used. This maps very easily in machine 
code and involves simply outputting two characters. For example: 

CLS 

MOV RO,#m RO should contain the new ~ode number M 
SWI vdu+22 Perform VDU 22 
SWI OS WriteC" Select mode M 

'r'lte clear text screen function is carried out by VDU 12. In machine code this 
is simply: 

SWI vdu+l2 Clear text screen 

That's all there is to it! 

CLG 

This is similar to CLS, but this time the control character used is VDU 16. In 
assembly code we write: 

313 



Archimedes Assembly Language 

SW! vdu+l6 Clear graphics screen 

COLOUR 

Listed below are the three variations of the COLOUR command: 

1) COWURL 
2) COWURL,P 
3) COLOUR L,R,G,B 

We shall develop assembler equivalents to each of these in turn. 

COLOUR L 

In this form, the statement simply selects colour L as the current text 
colour. It is equivalent to VDU 17,L - where L is the colour to be changed 
to. In assembly code, therefore, we would use the following instructions to 
select text colour two: 

MOV R0,#2 RO contains the colour number to be used 
SW! vdu+l7 Perform VDU 17,L 
SW! "OS WriteC" 

Listing 24.4 uses this template to output 63 star characters, each one in a 
different colour. 

Listing 24.4. Printing coloured stars. 

10 REM Example of the COLOUR template 
20 REM (c) Michael Ginns 1988 
30 REM Dabs Press : Archimedes Assembly Language 
40 REM 
50 
60 DIM coloured 256 
70 
BO REM Define constants and names for the registers used 
90 vdu 256 

100 col 17 
110 star = 42 
111 
120 n = 1 
130 

314 



,, 
140 P%= coloured 
150 [ 
160 
170 MOV n,#0 
180 .star loop 
190 MOV RO,n 
200 SWI vdu+col 
210 SWI "OS WriteC" 
220 SWI vdu+star 
230 ADD n, n, ill 
240 CMP n, #63 
250 BLE star loop 
251 SWI "OS NewLine" 
260 MOV PC, R14 
270 l 
280 
290 MODE 15 
300 CALL coloured 

Graphics Templates 

Loop to print 63 starts 
Prepare to select colour in 'n' 
Perform COLOUR n 

Output a '*' 
Increment 'n' 
See if 'n' has reached 63 yet 
If not, output the next '*' 
Output a newline 
Back to BASIC 

COLOUR L,P and COLOUR L,R,G,B 

These forms of the COLOUR command are used to redefine the logical co
lours from the full palette of 4096 physical colours. The first statement de
fines logical colour L to be physical colour P. The second gives more control 
by allowing colour L to be redefined in terms of its RED, GREEN and BLUE 
components. Both statements are implemented using the VDU 19 control 
code. The VDU 19 sequence is shown below: 

VDU 19,L,P,R,G,B 

"" The possible effects of this are shown in figure 24.2. To perform any of 
these just issue VDU 19, followed by the appropriate parameter sequence. 

Range for 'P' 
0-15 
16 

17 
18 
24 
25 

Effect 
Define logical colour L as physical colour P 
Define logical colour L in terms of RED, GREEN 

and BLUE components using R,G and B 
Define colour of first 'flash phase' for colour L 
Define colour of second 'flash phase' for L 
As before but define the border colour 
As before but define colour L of the mouse 

pointer's colours 

Figure 24.2. Possible effects using VDU 19. 

315 



Archimedes Assembly Language 

For example, to redefine the colour black (0), as levels 200, 10, and 180 of 
RED, GREEN and BLUE respectively, we would write: 

SWI vdu+l9 Perform VDU 19 
MOV R0,#0 RO=number of colour to be changed 
SWI "OS WriteC" 
SWI vctu+l6 16 specifies a RGB colour mapping 
MOV R0,#200 Amount of RED 
SW! "OS WriteC" 
MOV R0,#10 Amount of GREEN 
SWI "OS WriteC" 
MOV R0,#180 Amount of BLUE 
SW! "OS WriteC" 

GCOLa,c 

This command changes the graphics colour to colour 'c' and specifies a 
plotting action of 'a'. The table in figure 24.3 shows the various plotting 
options available. The colour being plotted is 'c'. 

0 
1 
2 
3 
4 
5 
6 
7 
8-15 
16 -31 
32-47 
48-63 
64-79 
80-85 

Plot colour 'c' directly on the screen 
OR colour on screen with 'c' and plot result 
AND colour on screen with 'c' and plot result 
EOR colour on screen with 'c' and plot result 
Invert colour on screen 
No colour plotted 
AND colour on screen with NOT 'c' and plot result 
OR colour on screen with NOT 'c' and plot result 
As before but background colour treated as transparent 
Use colour pattern 1 
Use colour pattern 2 
Use colour pattern 3 
Use colour pattern 4 
Use composite 'giant' pattern 

Figure 24.3. Plotting options. 

GCOL is performed by VDU 18,p,c. The assembler equivalent to this is simply 
to output character 18 followed by the two parameters. For example: 

GCOL 3,5 

316 



'\ 

POINT 

SWI vdu+lB 
MOV RO, #3 
SWI "OS WriteC" 
MOV R0,#5 
SWI "OS WriteC" 

VDU 18 (GCOL) 
Action code 3 
Output parameter 1 
Colour 5 
Output parameter 2 

Graphics Templates 

The POINT statement is used to find out the colour of a given point on the 
graphics screen. The operating system provides a direct equivalent to this, 
a SWI routine called os_ReadPoint. 

The routine is entered with the X co-ordinate of the point to be examined in 
register RO and the Y co-ordinate in register Rl. The call returns with the 
following information: 

R2 = The colour of the point 
R3 = The 'TINT' of the colour (256 colour mode) 
R4 = Zero if the point was on the screen and 

minus one if the point was not on the screen 

' Thus, to find the colour of the point at co-ordinates 700,560 we would use: 

MOV RO, #700 
MOV Rl,#560 
SWI "OS ReadPoint" 

X co-ordinate 
Y co-ordinate 
Examine point 

After executing these instructions, the information about the point would 
be contained in the appropriate registers, as just shown. 

' ON, OFF 
These two commands are graphics-related in that they turn the screen cur
sor on and off. The operating system provides two routines specifically to 
perform these functions: 

To tum cursor OFF: 

317 



Archimedes Assembly Language 

SWI "OS RemoveCursors" 

To restore the previous cursor state (ON): 

SWI "OS RestoreCursors" 

WAIT 

This is the last of our graphics commands. It is used in animation to syn
chronise programs with the vertical synchronisation pulse of the monitor. 
It reduces the screen flicker produced if graphics are drawn during the 
screen re-fresh scan. 

The equivalent to WAIT in machine code is OSBYrE 19. This is implemented ) 
as follows: 

318 

MOV RO,U9 
SWI "OS_Byte" 

OSBYTE number 19 
Call OSBYTE 



APPENDICES 

319 



A · Representing Numbers 

When programming in assembly language we are dealing with the internal 
workings of the machine. We therefore need an understanding of how the 
computer represents and manipulates data at this level. -" 

The central processing unit (CPU) at the heart of the computer does not 
even operate in the same number base as we do! We are used to counting in .~ 
the decimal (base 10) number system. In decimal, numbers are represented 
by combining digits from the 10 possible numbers available in the base 
(zero to nine). The problem with this, as far as the computer is concerned, ~ 
is that the various hardware elements of the system would have to man- l 

ipulate signals which ranged over 10 distinct levels. This would be required 
to represent any one of'the 10 possible decimal digits. 

In practice this turns out to be extremely inconvenient. Instead, only two 
signal levels or states are used to represent data: 

ON (usually represented by plus five volts) 
OFF (usually represented by zero volts) 

By convention, these two states are thought of as representing the digits 
one and zero respectively. As only two digits are used, we are operating in 
base two or the binary number system as it is called. A single digit in binary 
can only take the values zero or one - and is referred to as a bit, meaning ~ 
Binary digIT. 

Binary Numbers 

Obviously, working with single bits would be incredibly limiting, not least 
because the computer would only be able to count up to two! To overcome 
this, we group several bits together in much the same way that we group 
decimal digits to represent more than the numbers zero to nine in decimal. 

320 



Appendix A 

Consider the case of grouping two binary digits together. Each bit may be 
either a one or a zero, and so there are now four possible patterns or states 
which we can represent. These are shown in figure A.I. 

00 
01 
10 
11 

Figure A.I. The four possible patterns available with two bits. 

Each unique pattern can be used to represent one number, thus with two 
bits we could represent four different numbers. This same idea can be ex
tended to use more bits to allow more and more numbers to be represented. 
For example, if eight bits are grouped together, then 256 different combi
nations of ones and zeros are possible and therefore 256 different numbers 
can be represented. See figure A.2. 

Decimal 
0 
1 
2 
3 
4 
5 

Binary 
00000000 
00000001 
00000010 
00000011 
00000100 
00000101 

253 11111101 
254 11111110 
255 11111111 

Figure A.2. Possible patterns using eight bits. 

Blocks of eight bits have a special significance in computing and are refer
red to as bytes. Memory is frequently organised in bytes and thus one byte 
of memory can store one of 256 different patterns of data. 

Listing A.1 allows you to enter a number, then it will enumerate all the data 
patterns possible with this number of bits. Any number of bits can be used 

AAL-U 321 



Archimedes Assembly Language 

from one to 31. Try some values and see how rapidly the number of poss
ible patterns increases as extra bits are added. 

Listing A.1. Binary patterns. 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 

REM Binary pattern generator 
REM (c) Michael Ginns 1988 
REM Dabs Press : Archimedes Assembly Language 
REM 

CLS 
REPEAT 
REPEAT 
INPUT "Enter the number of bits to be used (1-31) : " bits 
UNTIL bits > 0 AND bits < 32 

PRINT SPC (9); "Number Pattern" 

FOR number = 1 TO 2Abits 
PROC print binary(number-1,bits-l) 
NEXT- -

UNTIL FALSE 

DEFPROC print binary(number,bits) 
PRINT number;-SPC(lO); 
FOR digit = bits TO 0 STEP -1 
IF number AND 2Adigit THEN PRINT "l"; ELSE PRINT "0"; 
NEXT 
PRINT 
ENDPROC 

The Archimedes processor can deal directly with data consisting of 32 bits. 
We obviously need some scheme for defining which of the possible binary 
patterns corresponds to which numeric value. This is again done using 
ideas which are familiar from the decimal number system. 

When we see the decimal number 1623 we intuitively know that this is the 
value one thousand six hundred and twenty three. However, we should 
stop to consider exactly how we calculated this value. The value is derived 
by multiplying the 'place value' of each digit in the number by the value of 
the digit itself. This gives us the actual value which each digit represents 
within the number. Finally, summing these values, we get the final value 
which the whole number represents. 

The place value, or weighting as it is called, is one for the right-most digit 
in the number. In decimal it then increases by a factor of 10 each time you 

322 



Appendix A 

move another digit to the left. If we number the digits from left to right, 
starting at zero, then another way of thinking about this is that the weight
ing of a given digit is lOn where n is the digit's number. Thus, the right
most digit has a weighting of 10° = 1 and therefore represents units. The 
next digit's weight is 101 = 10 and therefore it represents 10s ... and so on. 

Taking our original example of 1623, this can be broken down as follows: 

Deci11al 1 6 2 3 
Digit nuaber 3 2 1 0 

11 I L___ '100: • 
~ 10x2(TeM) 

10 2 • 100x6 (Hundred•) 
10) • 1000X1 ('ibOUMndS) 

1x3 (Unih) 

1623 

In binary, we again number the digits. As with decimal, we start numbering 
from the right-most bit which is designated 'bit O': 

/'\ Because the binary system is really base two, the weight of each bit is calcu
lated by ra~ing two to the power of the bit's number. Thus, bit zero has a 
weight of 2 = 1, bit one's weight is 21 = 2, bit two's is 22 = 4 and so on. Fig
ure A.3 contains the weights for each of the bits in a complete byte: 

7 6 5 4 3 2 1 0 

20 - 1 
2' - 2 
22 - "I: 
z3 8 
2-4 - 16 
25 - 32 
26 - 64 
2" - 128 

Figure A.3. The weightings of the eight bits in a byte. 

323 



Archimedes Assembly Language 

Converting from Binary to Decimal 

To convert from binary to decimal is very straightforward. We simply use ~ 
the same method as we would in decimal, ie, multiply each digit in the 
number by its weight and then sum all of the results. 

Working through an example should help to clarify matters: 

Convert binary 11001011 to decimal: 

1 1 0 0 1 0 1 1 

I~ 

Similarly to convert binary 10001111 to decimal: 

1 0 0 0 1 1 1 1 

I~ 

324 

1x2° - 1 

1x21 2 

Ox22
_ - 0 

1x2
3 

- 8 

ox2"' - 0 

Ox2
5 

- 0 

1x2
6 

- 64 
1x2

7 
- 128 

Total : 203 

1x2° - 1 

1x2
1 

- 2 

1x22 
= 4 

1x2
3 

- 8 
ox2"' 0 

Ox2
5 

- 0 

Ox26 0 
1x27 128 

Total : 143 

·'"\ 



I\ 

I\ 

Appendix A 

In the above examples the binary numbers were eight-bits long (one byte), 
however, the same process will work for any size number. For example, 
for 12 bits we have: 

1 0 1 0 0 0 1 1 0 1 1 0 

I~ 

Using Binary on the Archimedes . 

Ox2° = 0 

1x2 1 = 2 
1x22 

• 4 
Ox2 3 

• 0 
1x2~ • 16 
1x2 5 

• 32 
Ox2 6 

• 0 
Ox2 7 = 0 

Ox2 8 = 0 
1x2 9 

• 512 
Ox2 10 = 0 
1x2 11

2 2048 

Total: 2614 

Although it is very useful to be able to convert from binary to decimal by 
hand, BASIC on the Archimedes can accept binary numbers directly. For ex
ample, it is perfectly acceptable to say the following: 

A = %10010101 

This will set the variable A to the value 10010101 binary (149 decimal). Try 
printing the value or A afterwards to verify this. 

/"'\ Note the use of the % sign in the example. This specifies that the number 
following it is given in binary. This method of specifying binary numbers 
can be used wherever a numeric argument is required. For example: 

PRINT %10010101 
A = %10001 + %010101 
[ OPT !1;101 

325 



Archimedes Assembly Language 

Converting from Decimal to Binary 

Converting from decimal to binary involves attempting to subtract success
ive binary weights. 

If the binary weight, which we are trying to subtract, is greater that the 
number then no action is taken. A 0 is simply written in as the bit whose 
weight we were attempting to subtract. 

If, however, subtraction was possible, then the corresponding bit is written 
as a one. In this case we perform the subtraction. The result of this becomes 
the new number from which subsequent subtractions are attempted. 

This procedure is repeated, starting at the highest weight for which the 
subtraction is possible, and continuing through the weights down to a 
weight of one. At this point the sequence of ones and zeros written down 
will form the binary representation of the original number. 

This may sound a bit involved at first, but it really is quite easy in practice. 
The following example should illustrate the technique. 

Convert 231 decimal to binary: 

Decimal 
number 

231 
103 
39 
7 
J 
7 
3 
1 

Weight 

128 
64 
32 
16 
3 
4 
2 
1 

Subtraction 

231-128=103 
103-64=39 
39-32=7 

7-4=3 
3-2=1 
1-1=0 

Therefore, 231 is 11100111 in binary. 

Hexadecimal 

Binary 

1 
1 
1 
0 
0 
1 
1 
1 

So far we have seen how .numbers are represented by the computer in bi
nary and how to convert between binary and decimal. There is, however, 
another system of representing numbers which is commonly used in com
puting. This is base 16, called hexadecimal or simply hex. 

326 



Appendix A 

In decimal each digit making up a number could be chosen from a range of 
10 possibilities (zero to nine). In binary, there were only two digits 
available (zero and one). Well, in hexadecimal there are 16 possible digits 
available! The digits zero to nine are used as normal, but we then have a 
problem as we need six extra symbols to represent 10 to 15. The letters A to 
Fare used for this purpose, A=lO, B=ll and so on. 

As the base is 16, the weights of the digits in a hexadecimal number in
crease from right to left in powers of 16, ie, one, 16, 256, 4096 and so on. In 
the number hex 9F the F represents 15 units and the nine represents 9 x 161 

= 144. The whole number therefore is 9+144 = 159 in decimal. 

Figure A.4 shows the number zero to 15 expressed in decimal, binary and 
~ hexadecimal notations. 

Decimal 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Binary 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Hex 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

,.~ Figure A.4. Numbers in decimal, binary and hexadecimal. 

It is no coincidence that exactly four bits are required to represent a single 
~ hexadecimal digit, or that two hexadecimal digits can be stored exactly in 

one byte (eight bits). It is because of the close correspondence between 
hexadecimal and binary that it is so useful. It is much more concise than 
writing strings of ones and zeros, but it is more closely related to binary 
than the decimal number system. 

327 



Archimedes Assembly Language 

Converting from Binary to Hexadecimal 

The similarities between hexadecimal and binary are highlighted by the 
ease with which numbers can be converted between them. 

To convert a binary number into hexadecimal, we simply split it into 
groups of four bits starting at the right. Each of the four-bit binary 
numbers can then be directly translated into the corresponding 
hexadecimal digit shown previously in figure A.4. 

For example: 

1011.0101.: 1.01.1. 
B 

I 
I 

B5 

0101. 
5 

I 

Therefore, 10110101 in binary equals BS in hexadecimal. 

Similarly, for a 32-bit nun:iber: 

00100110011100110101010101001101: 

0010 0110 0111 0011 0101 0101 0100 1101 
2 6 7 3 5 5 4 D 

2673554D 

Converting from Hexadecimal to Binary 

To represent hexadecimal numbers in binary, we simply apply the reverse 
process. Each hexadecimal digit in the number is converted into the corre
sponding four-bit binary number. These groups of four bits are then 'glued 
together' to form the complete binary number corresponding to the orig
inal hexadecimal one. For example consider the number &13F699EB: 

328 



1 

0001 

I 

3 

0011 

I 

F 

1111 

I 

6 
0110 

I 

9 

1001 

I 

9 
1001 

I 

E 

1110 

I 

00010011111101101001100111101011 

Therefore, & 13F699EB= 00010011111101101001100111101011. 

Appendix A 

B 

1011 

I 

The only point to be careful about is the treatment of leading zeros. When 
individual digits are converted into binary, it is important to always have 
four bits. Thus, in the ab~ve example, when the digit three was converted 
to binary, two leading zeros were added to retain four bits. 

Hexadecimal on the Archimedes 

In the same way that binary numbers are prefixed with a % sign, 
hexadecimal numbers are distinguished on the Archimedes by preceding 
them with an & sign. Thus, we can say: 

A = &FF 

alternatively: 

PRINT &FE60 

Also, because hexadecimal is so frequently used, the Archimedes has the 
facility to perform the reverse operation and print decimal numbers out in 
hexadecimal format. This is done by prefixing the decimal number by'-'. 
For example: 

PRINT -3584 

r'\ This will cause the Archimedes to respond with EOO - the hexadecimal 
equivalent of 3584. Note that in teletext mode 7, the '-' character is dis
played as a ' + ' character. 

329 



B ·Computer Arithmetic 

In Appendix A, we saw how the computer physically represents numbers as 
sequences of bits. The next step is to examine how these numbers can be 
manipulated by the computer to implement simple arithmetic. 

After the complexities of binary representation, you could be forgiven for 
thinking that binary arithmetic is a problem which you could well do with
out! However, rest assured that arithmetic in binary is no more difficult 
that in decimal - just a bit different! 

Addition 

When adding together two bits there are four different cases possible. 
These are shown in figure B.1, together with the results of the addition on 
each case. 

0+0=0 
0+1=1 
1+0= 1 
1+1=0 carry 1 

Figure B.1 . Rules of binary addition. 

In the last case we added one to one which in decimal would give the result 
two. However, in binary this cannot be represented as a single digit, so we 
must carry one into the next column. This is similar to the case in decimal 
where the two digits to be added are, for example, eight and two. The re
sult of this can't be given in a single decimal digit and so we write a zero 
and carry one into the next column. It is vital to remember to include the 
carried digit when performing the addition in the next column. ~ 

Some examples should illustrate the technique: 

330 



Example 1: 101 
001+ 

110 

(5) 
(1) 

(6) 

Appendix B 

Note that in the right-most column, the addition 1 + 1 generated a carry 
into the next column. The next addition was therefore 0 + 0 + 1 (carry), 
which results in one and no carry. 

"" Check that converting the binary result 110 back into decimal gives you the 
expected answer of six. 

Example 2: 00110011 (51) 
01000011+ (67) 

01110110 (118) 

Again, the addition in the right-hand column is 1+1 which produces a car
ry. The addition for the next column then becomes 1 + 1+1 (carry). This is 

~ done in two parts; 1 + 1 gives a result of zero and produces another carry 
into the following column. Now adding the extra one carried from the pre
vious column gives 0 + 1 = 1. Thus, the result is to write down one and also 
carry one. 

Example 3: 10001001100111001100110011011010 (2308754650) 
10010101000110001100101001100110+ (2501429862) 

100011110101101011001011101000000 (4810184512) 

In this example we are adding together two 32-bit numbers, but the result 
is a 33-bit value. This is because the result of the addition is too large to re
present in 32 bits, and so a carry is generated from the left-hand column. 
This is perfectly acceptable on paper, however in practice, we may only 
have 32 bits available, so the result could not be stored. This condition is 
called an overflow and will usually cause an error or sp~cial corrective ac
tion to be taken. 

Subtraction 

Until now, our examination of the binary number system has dealt 
exclusively with positive numbers. However, when we try to tackle the 

331 



Archimedes Assembly Language 

subtraction of binary numbers we, immediately raise the possibility that 
negative results may be generated. It is necessary, therefore, to look at the 
ways in which negative quantities could be represented in the binary 
system before attempting any subtraction. 

This is also useful because, if we can represent negative numbers in binary, 
we can then perform the subtraction of two numbers simply by adding the 
negative of one of the numbers to the other. For example, the calculation: 

23-10 

Can be re-written as: 

23 + (-10) 

Providing we can form the binary equivalent to -10, we can use the ordi
nary rules of addition to add it to 23. The result of this will be equivalent to 
the original expression of 23 - 10. 

Representing Negative Numbers in Binary 

At first sight, it may seem very easy to modify the binary system to include 
negative numbers. After all, we only have to store whether the number is 
positive or negative, and this can be done in a single bit. While this is cer
tainly true, things are unfortunately not that easy! 

The following would be an example of simply using an extra bit to repre
sent the sign of a number. The left-most bit (bit 31) is now designated the 
sign bit. If it is a one then the number is negative, if it is a zero then the 
number is positive. Remember that the sign bit does not play any part in re
presenting the magnitude of the number, only bits zero to 30 are now used 
for this: 

00000000000000000000000000000011 (+3) 
10000000000000000000000000000011 (-3) 

This system looks as if it should work. Unfortunately it breaks 'down when 
we attempt to apply arithmetic operations on negative numbers. For ex
ample, if we try to add +3 and -3 then we should get a result of zero. 

332 



00000000000000000000000000000011 (+3) 
10000000000000000000000000000011 (-3) + 

10000000000000000000000000000110 (-6) 

Appendix B 

r'"'\ Converting the result back into decimal, we find that it is of magnitude six 
and that the sign is negative. Thus, using this system, we find that +3 ad
ded to -3 results in -6! Obviously, something more has to be done! 

One's and Two's Compliment 

!"""\ The problems we were experiencing before are solved if we use the two's 
complement system of representing negative numbers. The idea of using a 
sign bit is retained but the other bits forming the number are modified so 

~ that the number performs correctly under arithmetic operations. 

r"\ 

To form a negative number in two's complement format, simply perform 
the following steps: 

1) 

2) 

Start with the number expressed as a normal positive binary value 

Change, or invert, all the bits in the number. The number formed at 
this stage is called the one's complement 

" 3) 
To form the two's complement, from the one's complement, simply 
add one to the number using the normal rules of binary addition 

Again, taking the number-3 as an example the rules are applied as follows: 

Convert +3 to binary: 000000000000000000000000000011 
Invert the bits : 111111111111111111111111111100 

Add one to nUJlber : 111111111111111111111111111100 
1 + 

111111111111111111111111111101 

Therefore -3 is : 111111111111111111111111111101 

Thus, we have formed the two's complement representation of -3. Note 
that the left-most bit is still used as a sign bit, and is a one to indicate a ne
gative number. 

333 



Archimedes Assembly Language 

The way in which the two's complement of a number is calculated may 
seem unbelievable at first - but it really does work. Our previous example, 
where we were adding +3 and -3, can now be tried again: 

00000000000000000000000000000011 (+3) 
10000000000000000000000000000011 + (- 3) 

(1) 00000000000000000000000000000000 (0) 

Ignoring the final carry, the result is zero - the correct answer! 

In cases like this, it is perfectly acceptable to ignore the final carry as it is 
only an overflow of the sign bit from bit 31 - not a real overflow of the 
number itself. 

A couple more examples of subtraction using two's complement may help 
to make things clear: 

1) Perform 257--6: 

Convert -6 to binary: 00000000000000000000000000000110 ' (+6) 
11111111111111111111111111111001 
11111111111111111111111111111010 (-6) 

Invert the bits: 
Add one to number: 

Add 257 and -6: 

2) Perform 3 - 60 

Convert 60 to binary: 
Invert the bits : 
Add one to number : 

Add 3 and -60 : 

334 

00000000000000000000000100000001 (257) 
11111111111111111111111111111010 ( -6) 

(1) 00000000000000000000000011111011 (251) 

00000000000000000000000000111100 (+60) 
11111111111111111111111111000011 
11111111111111111111111111000100 (-60) 

00000000000000000000000000000011 (+3) 
11111111111111111111111111000100 (-60) 

11111111111111111111111111000111 (-57) 



~ 
I 

C · Logic Operations 

Logical operations deal only with quantities which are either true or false. 
They also yield results which are similarly restricted to being either true or 
false. The most useful logical operations are AND, OR and EOR. 

Logical operators are ideally suited to binary, as true and false, can be dir
ectly represented in a single bit. By convention true is always one and false 
is always zero. 

Having said that, logical operators only work with true or false values. It 
is perfectly acceptable to write expressions like the following: 

7 AND 12 = 4 

This may seem like a contradiction, but it isn't really! What the expression 
means is that the two numbers, seven and 12, should be expressed in binary 
form, and the logical operator AND should be applied between correspond
ing pairs of bits. This will yield a series of binary results which make up the 
bits in the numeric result. In this case the binary result, when converted 
back into decimal, is four. This will become clearer when we look at the in
dividual logical operators in detail. 

Logical AND 

In English the operation A AND B can be described as: 

'The result is true only if A is true AND Bis true' 

In binary, read one and zero for true and false respectively. The operation 
can be defined for all possibilities of A and B in the following truth table: 

A B 
0 0 
0 1 
1 0 
1 1 

Result 
0 
0 
0 
1 

335 



Archimedes Assembly Language 

With these four simple rules we can AND together any binary numbers 
simply by applying the rules to each pair of bits in turn. For example: 

00000000010010101001000101110111 (4666903) 
00000000100100010100101011101001 JJID (9521697) 

00000000000000000000000001100001 (97) 

The real usefulness of the AND operation is only apparent when you notice 
the following two properties: 

Anything ANDed with zero is zero 
Anything ANDed with one is left unchanged 

This means that by carefully choosing the correct binary pattern, we can 
create a mask which will force certain bits in the number to zero when 
ANDed with any other number whileleaving the others unchanged. ~ 

A zero in the mask will ensure that the corresponding bit in the number will 
be set to zero. A one bit in the mask, therefore, will leave the corresponding 
bit unchanged. 

We may, for example, want to zero the lower four bits in a number. This 
could be achieved using the following binary pattern as a mask: /'"""\ 

11111111111111111111111111110000 

ANDing this pattern with any other number would ensure that bits zero to 
three were all set to zero, but would leave the other bits in their original 
states. To sho-w this is the case, let us try ANDing the mask with a number: 

11110101001000100110001011010110 
mask 11111111111111111111111111110000 AND 

11110101001000100110001011010000 

Logical OR 

In English the operation A OR B can be described as: 

'The result is true if A is true OR if B is true' 

336 



r'\ 

AppendixC 

Once again, the operation can be defined for all the possibilities of A and B 
as follows: 

A B 
0 0 
0 1 
1 0 
1 1 

Result 
0 
1 
1 
1 

With these four basic rules we can OR together any binary numbers simply 
~ by applying the rules to each pair of bits in turn. For example: 

00011000101010100000100101000000 (413796672) 
00001000100011000010001000111010 OR (143401530) 

00011000101011100010101101111010 (414067478) 

Like the AND operation, OR is useful in manipulating single bits in binary 
numbers while leaving the others unchanged. Specifically, the OR opera
tion allows us to create a mask which will force any required bit to be a 
one. 

This is possible because of the following properties of the OR operation: 

Anything ORed with zero is left unchanged 
Anything ORed with one is one 

This means that a one in the mask will ensure that the corresponding bit in 
the number will be set to one. A zero bit in the mask will have no effect. 

r\ We may, for example, want to force bits one, three and five to be one. This 
could be achieved using the following binary pattern as a mask: 

00000000000000000000000000101010 

ORing this pattern with any number will set bits one, three and five, while 
leaving the others unchanged. Again, to prove the point, let's try an ex
ample as follows: 

AAL-V 337 



Archimedes Assembly Language 

10100001110101101100010100001000 
mask 00000000000000000000000000101010 OR 

10100001110101101100010100101010 

Logical EOR 

The EOR operation means Exclusive-OR. Its operation can be described in 
English as: 

The result is true if A is true OR if B is true but 
NOT if both A and B are true' 

This is slightly more complex than the other two operations, but can still be 
defined as follows: 

A B Result 
0 0 0 
0 1 1 
1 0 1 
1 1 : o (Note both A and B are true) 

Another way.of thinking about the EOR operation is that if the two bits are 
the same, then the result is zero. If they are different, then the result is one. 
Like AND and OR, the bits in two binary numbers can easily be EORed to
gether using the four rules. For example: 

00011101010100100101001001011101 (491934301) 
00111010101001010000000100011010 EOR (983892250) 

00100111111101110101001101000111 (670520135) 

,,,-

~ 

A very useful property of the EOR operation is that if a number is EORed 
with a mask containing only ones, then the number will be inverted. For 
example, all the ones will be changed to zeros, and all the zeros will be-
come ones. Thinking back to negative numbers in binary, the one's comple- ~ 
ment of a number was formed by inverting its bits. The EOR operation is 
therefore ideal for do this. For example, to form the one's complement of 
10010110, we can EOR it with 11111111 to get 01101001. ,--, . 

338 



D · Instruction Set Format 

This section contains details of the internal formats used to represent each 
of the ARM instructions. Each instruction is 32 bits wide. This is subdivided 
into several fields to represent options and data within the instructions. 

Data Processing Instructions 

31 26 27 ' 25 2"'1 21 20 19 15 11 0 

CON.DI 00, , I Opcode I SI Rn I Rd I Opcode2 I 

Field 
Cond 
Opcode 
Rd 

Purpose 
The conditional execution code (figure D.l) 
Defines which instruction it is (figure 0.2) 
The number of the destination register 
The number of the register used as operand 1 Rn 

Operand2 A register (possibly shifted) or an immediate constant 

Bit 
I 

s 

Function 
1=0 Operand 2 is a register 
1=1 Operand 2 is an immediate constant 

5=0 
S=l 

Modify status flags on execution 
Leave status flags unchanged 

339 



Archimedes Assembly Language 

Cond Condition Cond Condition 
Code Code 

0000 FQ 1000 I-ll 
0001 NE 1001 I.S 
0010 cs 1010 GE 
0011 cc 1011 LT 
0100 MI 1100 GT 
0101 PL 1101 LE 
0110 vs 1110 AL 
0111 vc 1111 NV 

Figure D.l. Condition codes. 

Opcode Instruction Opcode Instruction 

0000 AND 1000 TST 
0001 FOR 1001 TEQ 
0010 SUB 1010 CMP 
0011 RSB 1011 CMN 
0100 ADD 1100 ORR 
0101 ADC 1101 MOV 
0110 SBC 1110 BIC 
0111 RSC 1111 MVN 

; Figure D.2. Opcodes. 

Multiply Instructions 

340 

31 28 27 22 21 20 19 15 11 7 3 0 

Bit 
A 

I CONDI 0000001 Al SI Rnl Rdl Rs I 1001 I Rm I 

Function 
A=O Multiply only 
A=l Multiply and accumulate 



·\ 

Single Register Data Transfer 

31 28 27 25 2~ 23 22 21 20 19 15 11 0 

I CO~D I' 01 I 1 I P I U I B I W I L I Rn I Rd I O~et I 

Bit Function 
p P=O Post-indexed addressing 

P=l Pre-indexed addressing 

u U=O Offset subtracted from base address 
U=l Offset added to base address 

B B=O Word addressing used 
B=l Byte addressing used 

w W=O Do not perform writeback 
W=l Perform writeback 

L L=O Instruction is a store register (STR) 
L=l Instruction is a load register (LDR) 

Multiple Register Data Transfer 

s 

31 28 27 2~ 23 22 21 20 19 15 0 

I CO ND I 1 O O I P I U I S I W I L I Rn I Register I ist I 

S=O 
S=l 

Do not load status register 
Load status register 

Appendix D 

341 



Archimedes Assembly Language 

Branch Instructions 

31 2827 25 2~ 23 

COND.11 01 I L I 

L L=O 
S=l 

Ordinary branch 
Branch with link 

SWI Instructions 

0 

Offset 

31 28 27 2... 23 0 

I CONDI 1111 Comment I Data field I 

342 



" E · OS SWI Routines 

SWinumber SWinumber SWiname 
in hex in decimal 

000 0 OS_WriteC 
001 1 OS_WriteS 
002 2 OS_WriteO 
003 3 OS_NewLine 
004 4 OS_ReadC 
005 5 OS_CLI 
006 6 OS_Byte 
007 7 OS_Word 
008 8 OS_File 
009 9 OS_Args 
OOA 10 OS_BGet 
OOB 11 OS_BPut 
ooc 12 OS_GBPB 
OOD 13 OS_Find 
OOE 14 OS_ReadLine 
OOF 15 OS_Control 
010 16 OS_GetEnv 
011 17 OS_Exit 
012 18 OS_SetEnv 
013 19 OS_IntOn 
014 20 OS_IntOff 
015 21 OS_CallBack 
016 22 OS_EnterOS 
017 23 OS_BreakPt 
018 24 OS_BreakCtrl 
019 25 OS_UnusedSWI 
OlA 26 OS_ UpdateMemC 
OlB 27 OS _SetCallBack 
OlC 28 OS_Mouse 

\ 343 



Archimedes Assembly Language 

SWinumber SWinumber SWiname 
in hex in decimal 

OlD 29 OS_Heap 
OlE 30 OS_Module 
OlF 31 OS_Claim 
020 32 OS_Release 
021 33 OS_ReadUnsigned 
022 34 OS_GenerateEvent 
023 35 OS_ReadVarValue 
024 36 OS _SetVarValue 
025 37 OS_GSinit 
026 38 OS_GSRead 
027 39 OS_GSTrans ,.........,. 

028 40 OS _BinaryToDecimal 
029 41 OS _FSControl 
CJ2A 42 OS_ ChangeDynamicArea 
02B 43 OS_ GenerateError 
02C 44 OS _ReadEscapeState 
02D 45 OS _Ev al uateExpression 
02E 46 OS_SpriteOp 
02F 47 OS_ReadPalette 
030 48 OS_ServiceCall 
031 49 OS_ReadVduVariables ,,..-,.., 
032 50 OS_ReadPoint 
033 51 OS_UpCall 
034 52 OS_ CallA Vector 

~ 
035 53 OS_ReadModeVariable 
036 54 OS_RemoveCursors 
037 55 OS _RestoreCursors 
038 56 OS_SWINumberToString 
039 57 OS _SWINumberFromString 
CBA 58 OS ValidateAddress 
03B 59 OS= CallAfter 
03C 60 OS_CallEvery 
03D 61 OS _Remove Ticker Event 
oco 192 OS_ ConvertStandardDateAndTime 
OCl 193 OS_ConvertDateAndTime 
ODO 208 OS_ ConvertHexl 
ODl 209 OS_ ConvertHex2 
OD2 210 OS_ ConvertHex4 
003 211 OS_ ConvertHex6 

344 



Appendix E 

SWinumber SWinumber SWiname 
in hex in decimal 

OD4 212 OS_ ConvertHex8 
ODS 213 OS_ ConvertCardinal 1 
OD6 214 OS_ ConvertCardinal2 
OD7 215 OS_ ConvertCardinal3 
OD8 216 OS_ ConvertCardinal4 
OD9 217 OS_Convertlntegerl 
ODA 218 OS_Convertlnteger2 
ODB 219 OS_Convertlnteger3 
ODC 220 OS_ Convertlnteger4 
ODD 221 OS_ConvertBinaryl 
ODE 222 OS_ ConvertBinary2 
ODF 223 OS_ ConvertBinary3 
OEO 224 OS_ ConvertBinary4 
OEl 225 OS_ ConvertSpacedCardinal 1 
OE2 226 OS_ ConvertSpacedCardinal2 
OE3 227 OS_ ConvertSpacedCardinal3 
OE4 228 OS_ ConvertSpaced Cardinal4 
OES 229 OS_ConvertSpacedlntegerl 
OE6 230 OS_ ConvertSpacedlnteger2 
OE7 231 OS_ ConvertSpacedlnteger3 
OE8 232 OS_ ConvertSpacedlnteger4 
OE9 233 OS_ ConvertFixedN etStation 
OEA 234 OS_ ConvertN etSta ti on 

100+ 256+ Write character with ASCII value 
SWI number - 256 

200+ 512+ Available to the user 

345 



F · OSBYTE Routines 

·\ 

Routine Number Function 

&00 (O) Display OS version information 
&01 (1) Write user flag 
&02 (2) Specify input stream 
&03 (3) Specify output stream 
&04 (4) Cursor key status 
&05 (5) Write printer driver type 
&06 (6) Write printer ignore character 
&07 (7) Write RS423 receive rate 
&08 (8) Write RS423 transmit rate 
&09 (9) Write duration of first colour 
&OA (10) Write duration of second colour 
&OB (11) Write keyboard auto-repeat delay 
&OC (12) Write keyboard auto-repeat rate 
&OD (13) Disable event 
&OE (14) Enable event 
&OF (15) Flush buffer 
&12 (18) Reset function keys 
&13 (19) Wait for vertical sync (vsync) 
&14 (20) Reset font definitions 
&15 (21) Flush selected buffer 
&19 (25) Reset group of font definitions 
&lA (26) 
to Reserved 
&69 (105) 
&6A (106) Select pointer I activate mouse 
&6B (107) 
to Reserved 
&74 (111) 
&70 (112) Write VDU driver screen bank 
&71 (113) Write display hardware screen bank 
&72 (114) Write shadow /non-shadow state 

346 



Appendix F 

~ Routine Number Function 

&73 (115) 
/\ to Reserved 

&74 (116) 
&75 (117) Read VDU status 
&76 (118) Reflect keyboard status in LEDs 
&78 (120) Write keys pressed information 
&79 (121) Keyboard scan 
&7A (122) Keyboard scan from 16 decimal 
&7C (124) Clear escape condition 
&70 (125) Set escape condition 
&7E (126) Acknowledge escape condition 
&7F (127) Check for end of file 
&80 (128) Get buffer/mouse status 
&81 (129) Read key with time limit 
&86 (134) Read text cursor position 
&87 (135) Read screen mode and character at 

&88 (136) 
text cursor position 

to Reserved 
&89 (137) 
&8A (138) Insert character code into buffer 

,~ &8B (139) Write filing system options 
&8C (140) 
to Reserved 
&8E (142) 
&8F (143) Issue module service call 
&90 (144) Set vertical screen shift and interlace 
&91 (145) Get character from buffer 
&92 (146) 
to Reserved 
&97 (151) 
&98 (152) Examine buffer status 
&99 (153) Insert character into buffer 
&9A (154) 
to Reserved 
&9B (155) 
&9C (156) Read/write asynchronous 

communications state 

347 



Archimedes Assembly Language 

Routine Number Function 

&9D (1S7) 
to Reserved 
&9F (1S9) 
&AO (160) Read VDU variable value 
&Al (161) Read battery backed RAM 
&A2 (162) Write battery backed RAM 
&A3 (163) Read/write general graphics information 
&AS (16S) Read output cursor position 
&Bl (177) Read/write input source 
&B2 (17B) Read/write keyboard semaphore 
&BS (lBl) Read/write RS423 input 

interpretation status 
&B6 (1B2) Read NOIGNORE state 
&BF (191) Read/write RS423 busy flag 
&C2 (194) Read/write duration of second colour 
&C3 (19S) Read/write duration of first colour 
&C4 (196) Read/write keyboard auto-repeat delay 
&CS (197) Read/write keyboard auto-repeat rate 
&C6 (19B) Read/write *EXEC file handle 
&C7 (199) Read/write *SPOOL file handle 
&CB (200) Read/write BREAK and ESCAPE effect 
&C9 (201) Read/write keyboard status 
&CA (202) Read/write keyboard status byte 
&CB (203) Read/write RS423 input buffer 

minimum space 
&CC (204) Read/write RS423 ignore flag 
&Dl (209) Reserved 
&D2 (210) Read/write sound suppression status 
&D3 (211) Read/write bell channel 
&D4 (212) Read/write bell sound information 
&DS (213) Read/write bell frequency 
&D6 (214) Read/write bell duration 
&DB (216) Read/write length of function key string 
&D9 (217) Read/write paged mode line count 
&DA (21B) Read/write bytes in VDU queue 
&DB (219) Read/write TAB key code 
&DC (220) Read/write escape character 

34B 



Appendix F 

""" Routine Number Function 

&DD (221) Read/write interpretation of input 
to values 195 to 255 
&EO (224) 
&El (225) 
to Read/write function key interpretation 
&E4 (228) 
&ES (229) Read/write escape key status 
&E6 (230) Read/write escape effects 
&EB (235) Reserved 
&EC (236) Read/write character destination status 
&ED (237) Read/write cursor key status 
&EE (238) Read/write numeric 

&FO (240) 
keypad intehretation 

Read country ag 
&Fl (241) Read/write user flag 
&F3 (243) Read/write timer switch state 
&FS (245) Read '1rinter driver type 
&F6 (246) Read write printer ignore character 
&FD (253) Read last break type 
&FE (254) Set effect of SHIFr on numeric keypad 
&FF (255) Read/write startup options 

349 



G · OSWORD Routines 

Routine Number Function 

&00 (O) Read line from input stream 
&01 (1) Read system clock 
&02 (2) Write system clock 
&03 (3) Read interval timer 
&04 (4) Write interval timer 
&09 (9) Read pixel logical colour 
&OA (10) Read character definition 
&OB (11) Read colour palette 
&OC (12) Write colour palette 
&OD (13) Read current/previous graphics co-ords 
&OE (14) Read CMOS clock 
&OF (15) Write CMOS clock 
&15 (21) Define hardware cursor and 

mouse parameters 
&16 (22) Write screen base address 

350 



H · VDU Control Codes 

VDU Ctrl Extra Meaning 
Code bytes 
0 @ 0 Does nothing 
1 A 1 Sends next character to printer only 
2 B 0 Enables print~r 
3 c 0 Disables printer 
4 D 0 Writes text at text cursor 
5 E 0 Writes text at graphics cursor 
6 F 0 Enables VDU driver 
7 G 0 Generates bell sound 
8 H 0 Moves cursor back one character 
9 I 0 Moves cursor on one space 
10 J 0 Moves cursor down one line 
11 K 0 Moves cursor up one line 
12 L 0 Clears text area 
13 M 0 Moves cursor to start of current line 
14 N 0 Tums on page mode 
15 0 0 Tums off page mode 
16 p 0 Clears graphics area 
17 Q 1 Defines text colour 
18 R 2 Defines graphics colour 
19 s 5 Defines logical colour 
20 T 0 Restores default logical colours 
21 u 0 Disables VDU drivers or 

deletes current line 
22 v 1 Selects screen mode 
23 w 9 Multi-purpose command 
24 x 8 Defines graphics window 
25 y 5 PWT 
26 z 0 Restores default windows 
27 [ 0 Does nothing 
28 \ 4 Defines text window 
29 ] 4 Defines graphics origin 
30 /\ 0 Homes text cursor 
31 2 Moves text cursor 

351 



I · Plot Codes 

The groups of PLOT codes are as follows: 

0-7 (&00 - &07) Solid line including both end points 
s -15 (&OS - &OF) Solid line excluding final points 
16-23 (&10 - &17) Dotted line including both end points 
24-31 (&18 - &lF) Dotted line excluding final points 

32-39 (&20 - &27) Solid line excluding initial point 
40-47 (&2S - &2F) Solid line excluding both end points 
4S-55 (&30 - &37) Dotted line excluding initial point 
56-63 (&3S - &3F) Dotted line excluding both end points 

64-71 (&40 - &47) Point plot 
72-79 (&4S - &4F) Horizontal line fill (left & right) to 

non-background 
SO-S7 (&50 - &57) Triangle fill 
SS-95 (&SS - &SF) Horizontal line fill (right only) to 

background 
96 -103 (&60 - &67) Rectangle fill 
104-111 (&6S - &6F) Horizontal line fill (left & right) to . ....--..... 

foreground 
112 -119 (&70 - &77) Parallelogram fill 
120 -127 (&7S - &7F) Horizontal line fill (right only) to 

12S -135 (&SO - &S7) 
non-foreground 

Flood to background 
136 -143 (&SS - &SF) Flood to foreground 
144 -151 (&90 - &97) Circle outline 
152 -159 (&9S - &9F) Circle fill 

160 -167 (&AO-&A7) Circular arc 
16S-175 (&AS-&AF) Segment 
176-1S3 (&BO .- &B7) Sector 
184-191 (&BS - &BF) Block copy I move 

352 



192-199 
200-207 
208 -215 
216-223 

224-231 
232-239 
240-247 
248 - 255 

(&CO - &C7) 
(&C8 - &CF) 
(&DO - &D7) 
(&D8 - &DF) 

(&EO - &E7) 
(&E8 - &EF) 
(&FO - &F7) 
(&F8 - &FF) 

Ellipse outline 
Ellipse fill 
Graphics characters 
Reserved for Acom expansion 

Reserved for Acom expansion 
Sprite plot 
Reserved for user programs 
Reserved for user programs 

Appendix I 

Within each block of eight the offset from the base number has the 
following meaning: 

0 Move cursor relative (to last graphics point visited) 
1 Draw relative using current foreground colour 
2 Draw relative using logical inverse colour 
3 Draw relative using current background colour 
4 Move cursor absolute (ie, move to actual co-ordinate given) 
5 Draw absolute using current foreground colour 
6 Draw absolute using logical inverse colour 
7 Draw absolute using current background colour 

The above applies except for COPY and MOVE where the codes are 
as follows: 

184 (&B8) 
185 (&B9) 
186 (&BA) 
187 (&BB) 
188 (&BC) 
189 (&BD) 
190 (&BE) 
191 (&BF) 

AAL-W 

Move only, relative 
Move rectangle relative 
Copy rectangle relative 
Copy rectangle relative 
Move only, absolute 
Move rectangle absolute 
Copy rectangle absolute 
Copy rectangle absolute 

353 



J · Programs Disc 

A disc of software is available from Dabs Press to accompany this book. It 
contains all the example and tutorial programs listed in the previous 
chapters. In addition several other useful utility programs are available - a 
total of 74 programs! 

In addition to the programs contained within this book, you will find the 
following programs invaluable aids: 

A complete memory editor with ARM exception handler 
A demonstration of interrupt driven colours on the Archimedes 
A user friendly function key display I editor 
A memory block movement utility 
An ADFS disc sector editor 
An RGB colour definer allowing creation of all 4096 colours 
A memory block fill utility 
A full scrolling ARM disassembler _ 
Templates for implementing BASIC statements in ARM machine code 
A string and byte memory search utility 
Stack simulation program 
All 65 tutorial programs listed in this book -~ 

All of the programs on the disc are available from a menu for ease of use. 
The extra programs on the disc show off the new features of the remark-
able Archimedes machine. These are useful as stand alone utilities and also 
of interest in understanding how the different systems can be controlled. 

The disc is available in 3.5in ADFS format and the programs are not copy 
protected in anyway, so you are free to integrate them into your own 
software as it develops. The disc is compatible with all versions of the 
Archimedes including the A305, A310, A410 and A440. 

The cost of the disc is just £9.95 and it comes supplied with a small user 
guide which details how to use all the programs and provides additional 
documentation for the bonus programs. 

354 



,, 

Appendix J 

To obtain your copy of the Archimedes Assembly Language programs disc 
send £9.95 to the address given below. Cheques and POs should be made 
payable to Dabs Press. Access and Visa card orders are acceptable by 
phone, or via Prestel or Telecom Gold by quoting your number and expiry 
date - and don't forget your address! 

By post: 

By phone: 

Dabs Press 
76 Gardner Road 
Prestwich 
Manchester 
M25 7HU 

061-773-2413 

By electronic mail: 

Messages to Telecom Gold 72:MAG11596 and Prestel 942876210 

355 



K · Dabhand Guides 

The following Dabhand Guides and software packs are published or 
planned for 1988. Leaflets are available on all these products which go into 
considerably more detail than space here permits. Publication dates and 
contents are subject to change. All quoted prices are inclusive of v AT (on 
software, books are zero-rated), and postage and packing (abroad add £2 
or £10 airmail) . All are available from your local dealer or bookshop or in ,.-.,, 
case of difficulty direct from Dabs Press - see page 360. 

Books for the BBC Micros \ 

Archimedes Operating System: A Dabhand Guide 
By Alex and Nick van Someren 
ISBN: 1-870336-48-8. Available Autumn 1988. 250 pages approx 
Price: £14.95. 3.5in disc, £9.95. Book and disc together, £21.95 

The book that is a must for every serious Archimedes owner. It describes 
how the Archimedes works and examines the Arthur operating system in 
microscopic detail, giving the programmer a real insight into getting the 
best from the Archimedes. ~ 

The book is intended for the serious machine code, or BASIC, programmer 
and includes sections on: the ARM instruction set, SWis, graphics, Writing 
relocatable modules, vectors, compiled code, MEMC, vroc, IOC and much, 
much more. 

Master Operating System: A Dabhand Guide by David Atherton 
ISBN 1-870336-01-1. Available now. 272 pages. Book : £12.95; 5.25in disc 
£7.95; 3.5in disc £9.95. Book and disc together, £17.95 (£19.95 with 3.5in) 

The Master owners bible. Acclaimed reference guide for programmers and 
users of the BBC B+ and Master Series micros. Contains a wealth of 
information on the operating system, including all the * commands, OSBYTE 
and OSWORD calls, the Tube, filings systems and the differences between 
the various BBC micros. A&B Computing said it's 'invaluable' - we agree! 

356 



• 

Appendix K 

C: A Dabhand Guide by Mark Burgess 
ISBN: 1-870336-16-X. Available May 1988. Book, £14.95. 512 pages 
Archimedes disc, £9.95. Book and disc £21.95 

This massive 512 page book provides a comprehensive tutorial in C - fast 
becoming the de facto language for all micros. This book is ideal for the be
ginner and starts from first principles. It includes sections on all the major 
micros including the Master and the Archimedes. 

VIEW: A Dabhand Guide by Bruce Smith 
ISBN 1-870336-00-3. Publication : Available now. 248 pages 
Book: £12.95. Disc: DFS 5.25in, £7.95 ADFS 3.Sin, £9.95 
Book and disc together, £17.95 (ADFS £19.95) 

This top selling guide to VIEW, now in its second edition, has received rave 
reviews and is ail absolute must for all VIEW users. This is what they said: 

John Allen speaking on Radio London: 'It's very good .. .' 

Mike Williams, Beebug magazine June 1987: ' ... much more to offer the 
competent VIEW user ... practical and down-to-earth .. .for those who want 
a complete, thorough and readable guide to VIEW then Bruce Smith is your 
man.' 

Bill Penfold, Acorn User September 1987: 'This is the first computer book 
I've read in bed for pleasure rather than to cure insomnia.' 

ViewSheet and Viewstore: A Dabhand Guide by Graham Bell 
ISBN 1-870336-04-6. Available now. 352 pages 
Book: £12.95. Disc: DFS 5.25in, £7.95; ADFS 3.5in, £9.95 
Book and disc together, £17.95 (ADFS £19.95) 

A complete tutorial and reference guide for the Acornsoft ViewSheet 
spreadsheet and the ViewStore database manager, specifically written to 
appeal both to the beginner and to the more knowledgeable user. Also co
vers ViewPlot and OverView. 

Master 512: A Dabhand Guide by Chris Snee 
ISBN 1-870336-14-3_ Pub_lication: May 1988. 200 pages approx. Book: £14.95 

At last, the book that all Master 512 owners-have been waiting for. Covers: 

357 



Archimedes Assembly Language 

What you get on the discs, DOS Plus versions, explanation of the filing 
system, oos Plus cu commands (syntax, abbreviations and errors), trans
ient commands, file types, reserved extensions, reserved words, I/O, the 512 
memory map, how a PC works, 8086 registers, MS-DOS, 512 Tube, the 80186 
monitor, differences between DOS Plus and MS-DOS, making software work 
on the 512, colour limitations, hard disc set-up, PC disc formats, software 
compatibility, public domain software... \ 

Bumper Assemb.ler Bundle by Bruce Smith 
Publication: Available Now. Two books, two discs and booklet, just £9.95 

Five part package providing a complete tutorial in 6502 machine code at a 
third of their normal price. Full details on request. 

Mini Office II: A Dabhand Guide by Bruce Smith and Robin Burton 
ISBN: 1 870336 55 0. Publication Summer 1988. 300 pages approx. 

A complete guide to this award winning software covering every aspect of 
using this powerful software package . 

BBC and Master Software Packs 

HyperDriver by Robin Burton 

Software pack in ROM, £29.95. Sideways RAM version, only £24.95 

HyperDriver is the ultimate printer ROM. And if you have a printer, then ~ 
this will be the most significant purchase you can make. It's absurdly easy 
to use and provides you with many of the facilities missing from your cur-
rent software including: on-screen preview, CRT graphics, NLQ font and 
user-definable macros to name but a few. No matter what you use your 
printer for, wordprocessing, spreadsheets, databases, programming you 
will have in excess of 80 * commands available for instant use from within 
applications such as VIEW, InterWord and so on. ,,,--....,_ 

The HyperDriver pack contains a 16k EPROM, and a Sideways RAM image 
on disc.A full and comprehensive 100-page manual and reference card 
complete this value for money package. 

'The thought that's gone into the way HyperDriver is used with wordpro
cesors and a million over good desi9n features make the value of this 
ROM stand out ... an ingenious blessing. Geoff Bains, March 1988, Beebug. 

358 



Appendix K 

FingerPrint by David Spencer 
Available Now! Disc & manual, DFS version, £9.95; ADFS version, £11.95 

A unique single-step machine code tracing program allowing you to step 
through any machine code program. FingerPrint will even trace code 
situated in Sideways RAM/ROM - learn how BASIC works! 

MOS Plus by David Spencer 
Available Now! ROM, £12.95; disc for Sideways RAM, £7.95 (3.Sin, £9.95) 

For the Master 128. Provides ADFS *FORMAT, *VERIFY, *BACKUP, *CATALL 
and *EXALL in ROM and new * commands such as *FIND - which finds a file 
anywhere on an ADFS disc. A complete alarm system is present using the 
Master 128 alarm facility, as is an AMX Mouse driver. 

'MOS Plus is an excellent product', Dave Somers, March 1988, Beebug 

Side Writer by Mike Ginns 
Available Now. 5.25in DFS disc, £7.95; 3.5in ADFS disc, £9.95; 

For Sideways RAM owners this is a pop-up notepad which can be used 
from within any application. Notes taken in SideWriter can be saved to 
disc, transferred to a wordprocessor, or printed out. 

Master Emulation ROM by David Spencer 
Available Now. ROM version, £19.95 (disc for Sideways RAM, £14.95) 

Provides model B and B+ owners with most of the features of the Master 
128, such as the new* commands, the extended filing system operations 
including the temporary filing system, the *CONFIGURE system (using 
battery-backed Sideways RAM and/or a disc file), and if you have the hard
ware, Sideways or Shadow RAM. The only Master operating system soft
ware not covered in this ROM, is the extended graphics software. Works 
with all popular SRAM boards. 

' ... the whole system feels like a Master ... most impressive is an almost com
plete emulation of the temporary filing system ... ' Bernard Hill, March 
1988 Beebug. 

359 



Archimedes Assembly Language 

Other Books from Dabs Press 

AmigaDOS: A Dabhand Guide by Mark Burgess 
ISBN 1-870336-47-X. Publication: July 1988. 300 pp approx. Price: £14.95 

WordStar 1512: A Dabhand Guide - Including WordStar Express 
by Bruce Smith 
ISBN 1-870336-17-8. Publication: Summgr..1988. 300 pages approx 
Book: £12.95. Disc: 5.25in, £7.95; book and disc together, £17.95 

PCW 9512: A Dab hand Guide by John Atherton 
ISBN 1-870336-50-X. Publication: Third quarter. 300 pages approx 

Z88 Advanced User Guide by David Spencer 
ISBN 1-870336-60-7:-.:J,~ublication: Third quarter. 300 pages approx 

Z88 PipeDream: A Dabhand Guide by Rob Miller 
ISBN 1-870336-61-5. Publication: Third quarter. 300 pages approx 

WordPerfect: A Dabhand Guide by Mark Burgess 
ISBN 1-870336-53-4. Publication: Fourth quarter. 350 pages approx 

PostScript: A Dabhand Guide by Paul Martin 
ISBN 1-870336-54-2. Publication: Fourth quarter. 300 pages approx 

Ability Plus: A Dab hand Guide by Geoff Cox 
ISBN 1-870336-51-8. Publication: Third quarter. 300 pages approx 

SuperCak 3.V3.2: A Dabhand Guide by A A Berk 
Publication: Fourth quarter. 300 pages approx 

Please note: 

All future publications are in an agvanced state of preparation. Content 
lists serve as a guide, but we reserve the right to alter and adapt them 
without notification. If you would like more information about Dabs Press, 
books and software, then drop us a line at 76 Gardner Road, Prestwich 
Manchester M25 7HU, and we'll send our latest catalogue. 

360 



Index 

abort error, memory 23 
ABS 270 
absolute, addressing 115,124 
ADC 69~7 
ADD 69~5 
addition 69,85~7 
addition multi-word 87 
addition, rules of 330 
address bus 20,25,32 
address exceptions 23,180 
address space 21,23,205 
addressing absolute 115,124 
addressing byte mode 21,125,253 
addressing indirect 116 
addressing modes 115,117,125 
addressing PC relative addressing 124,131 
addressing post-indexed 117,122,253 
addressing pre-indexed 117,121,124 
addressing register 116,275 
ADR 51,193,253 
AL, conditional suffixes 62 
ALIGN, assembler 154 
ALU 27 
AND 69,100,104,273,282,283,335 
AND truth table 335 
animation 318 
anti-aliasing, fonts 230,235 
anti-aliasing pallete, fonts 232,235 
applications, stacks 146 
ARM 13 14,17,173 
array support 116,120,122,156,274,275 
arrays, dimensioning274 
ARTHUR 35,138,158,190,208 
ascending stacks142,144 
ASL, shifts 75,78 
ASR, shifts75,81 
assembler 41,124,147 

assembler ALIGN 154 
assembler comments 49 
assembler conditional assembly 

161,164,166 
assembler conditional suffixes 56,69,85,95, 

assembler directives 
assembler entering 
assembler EQUB 
assembler EQUD 
assembler EQUS 

132,280,281 
52,147,152,154 
43,162 
152,153,154,221 
152,221 
152,153,154, 193, 
221,243,252 

assembler EQUW 152,154,221 
assembler error reporting 148,149 
assembler forward references 149 
assembler, labels 50,52,131,149 
assembler listings 44,47,147,148,163 
assembler location counter P% 44,45, 50, 

52,152,154,274 
assembler macro assembly 161,166 
assembler macro parameters 164 
assembler object code 41,43,44 
assembler OPT settings 147,148,151 
assembler passes 150 
assembler pseudo addressing 124 
assembler reserving memory 45,152 
assembler source code 41,43,46,147 
assembly, offset 148,151 
attributes, icon 216 
auto-increment/ decrement 

B suffix 125,170 
barrel shifter 28 

126 

base address/register 117,118,122,126,275 
BASIC the assembler 41,52,150,161,164 
BASIC functions 52,162,270 

361 



Archimedes Assembly Language 

BIC 69103 
binary addition examples 331 
binary arithmetic 330 
binary numbers 322 
binary on the Archimedes 325 
binary pattern program 322 
binary representation 320 
binary signals 320 
binary strings, conversion to 198 
binary subtraction examples 334 
binary subtraction 331 
binary to decimal conversion 324 
binary to hex conversion 328 
binary weightings 323 
bit 320 
bits, grouping 321 
bitwise logical operators 100,101,102,103, 

273,335 
BL 32,131,134,291 
borrow in subtraction 
branch offset 131 

90 

branches 33,39,131,149,180,280,285, 286, 
290,291 

branches, conditional 
breakpoints, debugger 
bus width 19 
bus 19,25 
byte mode, addressing 
B 131 
BY 304 
byte 321 

cache, font 226,238 
CALL48,155 

132,279 
168 

21,125,253 

CALL parameter block 155 
CALL parameter types 156 
carry digit 330 
carry flag 32,34,61,77,79,81,83,84,87, 90, 

92,106 
case sensitivity 138 
case statement example 290 
case 289 
CC, conditional suffixes 61,67 

362 

character strings 
125,152,153,154,156,157,159,192,193,196,243 
CIRCLE FILLED 309 
CIRCLE template example 308 
CIRCLE 120 293,301,307 
CLG 313 
CLS 313 
CMN63,99 
CMP 58,63,69,95,106,270,279 
co-ordinates, graphics 297,299,302, 317 
co-processor instructions 170 
colour re-definition 315 
COLOUR 314 
colour, fonts 231,235,236 
comments, assembler 49 
compari~ons 283,285,289 
compars10ns 58,63,69,95,99,256,279 
condition codes 55 
conditional assembly an example 165 
conditional assembly, assembler 161,164, 

166 
conditional branches 132,279 
conditional execution of instructions 

39,55,279 
conditional suffixes AL 62 
conditional suffixes CC 61,67 
conditional suffixes CS 61 
conditional suffixes EQ 58 
conditional suffixes GE 64 
conditional suffixes GT 65 
conditional suffixes HI 63 
conditional suffixes LE 65 
conditional suffixes LS 63 
conditional suffixes LT 64 
conditional suffixes MI 60 
conditional suffixes NE 58 
conditional suffixes NV 62 
conditional suffixes PL 60 
conditional suffixes VC 59 
conditional suffixes VS 59 
conditional suffixes, assembler 56,69,85, 

95,132,280,281 
conditional suffixes 56,66,69,85,95, 

117,132,281 



control codes 297 ,351 
conversion routines 195,267,268 
conversion to binary strings 198 
conversion to decimal strings 196,267 
conversion to hex strings 197 
conversion, binary to decimal 324 
conversion, binary to hex 328 
conversion, decimal to binary 326 
conversion, hex to binary 328 
copying characters 253,255,259,260, 

261,265 
COSINE 120 
CS, conditional suffixes 61 

data areas in machine code 152 
data field, immediate operands 72 
data processing operations 27,69 
OCB 152153 
OCD 152 
DCW152 
debugger 161,167 
debugger breakpoints 168 
debugger disassembly 170 
debugger entering and exiting 168 
debugger memory examination169,170 
debugger, register examination 169,171 
debugger tracing programs168 169,171 
debugging machine code 166,167 
decimal strings, conversion to 196,267 
decimal to binary conversion 326 
defining icons 215 
descending stacks 142,144 
destination operand 70,93,107,112 
dimensioning arrays 274 
direction of storage 127 
directives, assembler 52 147,152,154 
disabling events 177 
disabling interrupts 173 
disassembly, debugger 170 
DIV 271 
division 79 81,271 
DRAW 297,298,304,305 

empty, stacks 142,144 
enabling events 177 
enabling interrupts 173 
end of string marker 243,252,256,258, 

259,260 
entering and exiting, debugger 168 
entering, assembler 43,162 
EOR 69102,106,113,273,335,338 
EOR truth table 338 
EQ, conditional suffixes 58 
EQUB, assembler 152,153,154,221 
EQUD, assembler 152,221 

Index 

EQUS, assembler 152,153,154,193,221, 
243,252 

EQUW, assembler 152,154,221 
error handling 184 
error reporting, assembler 148,149 
event causes 177 
events, disabling 177 
events, enabling 177 
events 176177,186 
exception vectors 179,180 
executing machine code 48 
execution of instructions, conditional 39, 

55,279 

FALSE 335 
fetch execute cycle 24,27,33,39 
fill, flood 312 
FILLED, CIRCLE309 
FILLED, RECTANGLE 310 
FIRQ 35,173,175 
FLIH 172 
floating point instructions 170 
flood fill 312 
FN, functions 162 
font cache 226,238 
font files 226,227 
font handle 227 
font painting example 229 
font workspace 226 
fonts anti-aliasing 230,235 
fonts anti-aliasing .pallete 232,235 

363 



Archimedes Assembly Language 

fonts colour 231,235,236 
fonts demonstration of anti-aliasing 233 
fonts 226 

fonts initialising 227 
fonts losing fonts 238 
fonts painting 228 
fonts resolutions 230 
fonts transfer functions 234 
FOR. .. NEXT loop demonstration 287 
FOR. .. NEXT 239,286 
format of instructions 42,71,115,339 
format of templates 242 
forward references, assembler 149 
full stacks 142,144 
functions FN 162 

GCOL options 316 
GCOL316 
GE, conditional suffixes 64 
GET 245 
graphics 120,135,209,293,297 
graphics co-ordinates 297,299 ,302,317 
grouping bits 321 
GT, conditional suffixes 65 

hard disc 23,24 
hex digits 327 
hex on the Archimedes 329 
hex strings, conversion to 197 
hex to binary conversion 328 
hexadecimal 326 
Ill, conditional suffixes 63 

icon attributes 216 
icons, defining 215 

IF ... THEN example 281 
IF ... THEN ... ELSE, multi-conditioned 282 
IF ... THEN ... ELSE .. ENDIF 279 289 

364 

illegal immediate operands 73 
illegal instruction exceptions 180 
immediate operands data field 72 
immediate operands position field 72 
immediate operands, illegal 73 
immediate, operands71,74,107,117,119 
indirect, addressing 116 

initialising, fonts 227 
INKEY 245 
INPUT 194,243,270 
input/ output techniques 18,191,243 
input/ output, memory mapped 18 
INSTR 263 
instruction formats 42 
instruction groups 68 
integer variables 53 
interrupt flags 33,35,174 
interrupt intercept routines 176,205 
interrupt program rules 176 
interrupts on the Archimedes 35,172, 

173,174 
interrupts returning from 175,185 
interrupts service routines 172,174, 

interrupts, disabling 173 
interrupts, enabling 173 
interrupts 33 35,172,185,205 
interrupts, software 138 
interrupts, sources of173 
IRQ 35,173,175 

176,205 

labels, assembler 50,52,131,149 
LDM 126 142,143 
LDR 115 126,275 
LE, conditional suffixes 65 
LEFT$ 259,260 
LEN 258,259,260,261 
LIFO 140,145,292 
LINE template example 305 
LINE 301,305 
link register 32,48,93,134,137,175,291 
listings, assembler 44,47,147,148,163 



loading, registers 115,126,253 
local variables 292 
location counter P%, assembler 44,45,50, 

52,152,154,274 
logical operators, bitwise 100,101,102, 

103,273,335 
loops 254,256,263,265,279 ,285,286 
losing fonts 238 
LS, conditional suffixes 63 
LSL, shifts 75,77,275 
LSR, shifts 75,79 
LT, conditional suffixes 64 

machine code, executing 48 
macro assembly, assembler 161,166 
macro parameters, assembler 164 
masks 103,104,113,218,336,337,338 
MEMEC 23 
memory abort error 23 
memory access 19,20,38,115 
memory examination, debugger 169,170 
memory management 23,205 
memory mapped input/output 18 
memory 18,29,115,205 
MI, conditional suffixes 60 
MID$261 
MLA 69,109 
mnemonics 41 42,69,74 
MOD 271 
mode flags 34,110,113 
MODE 313 
mouse 138,188,208,210,221 
MOV 49,69,93,111,137,270 
MOVE 297,301,303,304,305 
multi-conditioned IF .. THEN .. ELSE 282 
multi-word, addition87 
MUL 69,78,107 
multiple transfer options 127 
multiple register transfer 125 
multiplication 69,107,109,120,275 
MVN 69,94,270,273 

Index 

names in the assembler, register 42 
NE, conditional suffixes 58 
negative flag 32,33,34,60,113 
negative number representation 60,78, 

79,81,94,99,270,286,332,333,338 
NOT 273 
NV, conditional suffixes 62 

0% 151 
object code, assembler 41,43,44 
offset assembly 148,151 
offset field/register 117,118,122,123,124 
offset, branch 131 
OFF 318 
ON 318 
one's compliment 333,338 
operands 27 29,42,69,70,74,91,107,110,117 
operands immediate 71,74,107,117,119 
operands register 29,70,74,107, 

110,117,118 
operands shifted 39,74,77,93,107, 

117,120,275 
operating system 158,180,190,297 
OPT settings, assembler 147,148,151 
options, multiple transfer 127 
OR 273,282,336 
OR truth table 337 
ORIGIN 313 
ORR 69,101 
OSBYTE 200,245,247 ,318,346 
OSCLI 202 
OSRDCH 192 
OSWORD 201,350 
OSWRCH 191 
OS_Args, swi 184 
OS_BGet, swi 184 
OS_BinaryToDecimal, swi 196,269 
OS_BPut, swi 184 
OS_Byte, swi 160,177,184,200,245, 

247,318,346 
OS_CallAfter, swi 205 
OS_CallEvery, swi 205 
OS_Claim, swi 181 

365 



Archimedes Assembly Language 

OS_CLI, swi 160,184,202 

198 
OS_ConvertBinaryN, swi 198 
OS_ConvertCardinalN, swi 
OS_ConvertHexN, swi 197 
OS_ConvertlntegerN, swi 198 
OS_ConvertSpacedCardinal, swi 199 
OS_ConvertSpacedinteger, swi 199 
OS_EnterOS, swi 204 
OS_File, swi 184 
OS_Find, swi 184 
overflow flag 32,34,59 

P suffix 113 
P% 44,45,50,52,152,154,274 
painting, fonts 228 
parameter block, CALL 155 
parameter types, CALL 156 
passes, assembler 150 
passing data to machine code 53,155, 

159,253 
PC relative addressing, addressing 124,131 
pipelining 25,l ll,113,124,134,175 
pixels231 
PL, conditional suffixes 60 
PLOT example 301 
PLOT 135,188,298,303,352 
POINT 303,304 
POINT() 317 
position field, immediate operands 72 
post-address modification 127 
post-indexed, addressing 117,122,253 
POS 247,249 
pre-address modification 127,275 
pre-indexed, addressing 117,121,124 
preserving registers 130,137,175,176,292 
PRINT 247 
printer 164 
private, registers 35,175 
procedure parameters 293 
procedures 291 

pull 141,143 
push 141,143 

Rl4 32,48,93,134,137,175,291 
Rl5 32,33,34,43,49,93,107,l lO,l l l,112, 

131,134,137,174 
range of immediate operands 71,119 
re-entrant code 176 
RECTANGLE 301,310,311 
recursive programs 137,292,293 
register examination, debugger 169,171 
register list 126,143,159 
register names in the assembler42 
register transfer, multiple 125 
register usage in templates242 
register, operands 29,70,74,107,110, 

117,118 
registers, private 35,175 
registers 29,35,38,42,53,110,115,126, 

159,175,204 
RECTANGLE FILLED 310 
relative co-ordinates 304,307 
relocatable programs 131,151 
REPEAT ... UNTIL 285 
reserving memory, assembler 45,152 
resolutions, fonts 230 
restrictions, multiply instructions 107,109 
returning data from machine code 53 
returning from machine code 48 
returning from, interruptsl75,185 
RGB colour selection 316 
RIGHT$ 260 
RISC 13,34,37 
ROR, shifts 
rotate83 84 
RRX,,shifts75,84 
RSB 6991 
RSC 69,92 

75,83 

rules of addition 330 

processor modes 32,34,113,138,174,204 S, suffix 66,69,85,88,90,95,99,100, 
104,106,113,137 program counter 32,43,49,93,107,110, 

111,112, 131,134,137,174 
pseudo-addressing, assembler 124 

366 

SBC 69,90 
screen memory 118 



I • 

screen mode 234 
service routines, interrupts 

SGN 270 

172,174, 
176,205 

shifted, operands 39,74,77,93, 
107,117,120,275 

shifts 28,39,61,74,77,93,120,164,275 
shifts ASL 75,78 
shifts ASR 75,81 
shifts LSL 75,77,275 
shifts LSR 75,79 
shifts ROR 75,83 
shifts RRX 75,84 
sign bit 332 
SINE 120 
sketch pad 209 
skipping instructions 111,113 
software interrupts 138 
SOUND 277 
Sound_Control, swi 277 
source code, assembler 41,43,46,147 
sources of interrupts 173 
SPC 247,249 
special purpose registers 31,110 
stack model 140 
stack option codes 144 
stack pointer 141,143 
stack types 142,144 
stacks applications 146 
stacks, ascending 142,144 
stacks, descending 142,144 
stacks, empty 142,144 
stacks, full 142,144 
stacks 129,137,140,292,293 
status flags 32,33,39,55,66,85,93,95,104,110, 

113,159,174,279,281 
status register 32,33,55,66,85,93,95,104, 

110,113,159,174,279 
STM 126,142,143 
storing registers 115,126,253 
STR$ 268 
string assignment 253 
string comparison 256,263,284 
string concatenation 255,265 

Index 

string information block (SIB) 156,157 
string representation 252 
string searching 263 
string, termination 243,252,256, 

258,259,260 
STRING$ 265 
strings, character 125,152,153,154,156, 

157,159,192,193,196,243 
STR 115 126,196,275 
SUB 69,89,175 
subroutines 32,93,134,135,146,161,291 
subtraction 89 ,90 
suffixes 42,56,66,69,85,113,117,125 
SUM 275 
supervisor mode 35,138,204 
SVC 35 
swi 256 + n191,298 
swi OS_Args 184 
swi OS_BGet 184 
swi OS_BinaryToDecimal 196,269 
swi OS_BPut 184 
swi OS_Byte 160,177,184,200,245, 

247,318,346 
swi OS_CallAfter 205 
swi OS_CallEvery 205 
swi OS_Claim 181 
swi,OS_CLI 160,184,202 
swi,OS_ConvertBinaryN 198 
swi OS_ConvertCardinalN 198 
swi OS_ConvertHexN 197 
swi OS_ConvertlntegerN 198 
swi OS_ConvertSpacedCardinal 199 
swi OS_ConvertSpacedinteger 199 
swi OS EnterOS 204 
swi OS-File 184 
swi OS=Find 184 
swi OS_plot 302 
swi 138 159,180,187,190,343 
swi Sound_Control 277 

templates, format of 242 
templates, register usage in 242 
termination, string 243,252,256, 

258,259,260 

367 



Archimedes Assembly Language 

tracing programs, debugger 168,169,171 
transfer functions, fonts 234 
truth table, AND 335 
truth table, EOR338 
truth table, OR 337 

VC, conditional suffixes 59 
VS, conditional suffixes 59 

368 

--

\l 




